13 research outputs found

    Standardizing output-based surveillance to control non-regulated cattle diseases:Aspiring for a single general regulatory framework in the European Union

    Get PDF
    Several European countries have implemented country specific programmes to control cattle diseases with little or no regulation in the European Union (EU). These control programmes vary between member states, impairing a confident comparison of freedom from disease when cattle originate from different countries. In order to facilitate safe trade, there is a need to support the development of transparent methods that enable comparison of outputs of surveillance, control or eradication programmes. The aim of the COST Action (CA 17110), Standardizing OUtput-based surveillance to control Non-regulated Diseases in the EU (SOUND control), is the development of a generic and joint understanding of the requirements and characteristics needed for a flexible output-based framework. This framework should be able to substantiate the confidence of disease freedom and cost-effectiveness of heterogeneous surveillance, control or eradication programmes for cattle diseases in the EU. This project supports other initiatives in the development of an output-based framework which will subsequently facilitate safe trade and support the improvement of disease control measures, which is of great importance as the cattle sector contributes to one third of the total gross production value of EU agriculture

    Overview of Cattle Diseases Listed Under Category C, D or E in the Animal Health Law for Which Control Programmes Are in Place Within Europe

    Get PDF
    The COST action “Standardising output-based surveillance to control non-regulated diseases of cattle in the European Union (SOUND control),” aims to harmonise the results of surveillance and control programmes (CPs) for non-EU regulated cattle diseases to facilitate safe trade and improve overall control of cattle infectious diseases. In this paper we aimed to provide an overview on the diversity of control for these diseases in Europe. A non-EU regulated cattle disease was defined as an infectious disease of cattle with no or limited control at EU level, which is not included in the European Union Animal health law Categories A or B under Commission Implementing Regulation (EU) 2020/2002. A CP was defined as surveillance and/or intervention strategies designed to lower the incidence, prevalence, mortality or prove freedom from a specific disease in a region or country. Passive surveillance, and active surveillance of breeding bulls under Council Directive 88/407/EEC were not considered as CPs. A questionnaire was designed to obtain country-specific information about CPs for each disease. Animal health experts from 33 European countries completed the questionnaire. Overall, there are 23 diseases for which a CP exists in one or more of the countries studied. The diseases for which CPs exist in the highest number of countries are enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis, bovine viral diarrhoea and anthrax (CPs reported by between 16 and 31 countries). Every participating country has on average, 6 CPs (min–max: 1–13) in place. Most programmes are implemented at a national level (86%) and are applied to both dairy and non-dairy cattle (75%). Approximately one-third of the CPs are voluntary, and the funding structure is divided between government and private resources. Countries that have eradicated diseases like enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis and bovine viral diarrhoea have implemented CPs for other diseases to further improve the health status of cattle in their country. The control of non-EU regulated cattle diseases is very heterogenous in Europe. Therefore, the standardising of the outputs of these programmes to enable comparison represents a challenge.Cost Action SOUND CONTRO

    Genomic and Biochemical Analysis of N Glycosylation in the Mushroom-Forming Basidiomycete Schizophyllum commune▿ †

    Get PDF
    N-linked glycans of Schizophyllum commune consist of Man5-9GlcNAc2 structures. Lack of further glycan maturation is explained by the absence of genes encoding such functions in this and other homobasidiomycetes. N-linked glycans in vegetative mycelium and fruiting bodies of S. commune are mainly Man7GlcNAc2 and Man5GlcNAc2, respectively, suggesting more efficient mannose trimming in the mushroom

    Standardizing output-based surveillance to control non-regulated cattle diseases: Aspiring for a single general regulatory framework in the European Union

    Get PDF
    Several European countries have implemented country specific programmes to control cattle diseases with little or no regulation in the European Union (EU). These control programmes vary between member states, impairing a confident comparison of freedom from disease when cattle originate from different countries. In order to facilitate safe trade, there is a need to support the development of transparent methods that enable comparison of outputs of surveillance, control or eradication programmes. The aim of the COST Action (CA 17110), Standardizing OUtput-based surveillance to control Non-regulated Diseases in the EU (SOUND control), is the development of a generic and joint understanding of the requirements and characteristics needed for a flexible output-based framework. This framework should be able to substantiate the confidence of disease freedom and cost-effectiveness of heterogeneous surveillance, control or eradication programmes for cattle diseases in the EU. This project supports other initiatives in the development of an output-based framework which will subsequently facilitate safe trade and support the improvement of disease control measures, which is of great importance as the cattle sector contributes to one third of the total gross production value of EU agriculture

    Standardizing output-based surveillance to control non-regulated cattle diseases: Aspiring for a single general regulatory framework in the European Union

    No full text
    Several European countries have implemented country specific programmes to control cattle diseases with little or no regulation in the European Union (EU). These control programmes vary between member states, impairing a confident comparison of freedom from disease when cattle originate from different countries. In order to facilitate safe trade, there is a need to support the development of transparent methods that enable comparison of outputs of surveillance, control or eradication programmes. The aim of the COST Action (CA 17110), Standardizing OUtput-based surveillance to control Non-regulated Diseases in the EU (SOUND control), is the development of a generic and joint understanding of the requirements and characteristics needed for a flexible output-based framework. This framework should be able to substantiate the confidence of disease freedom and cost-effectiveness of heterogeneous surveillance, control or eradication programmes for cattle diseases in the EU. This project supports other initiatives in the development of an output-based framework which will subsequently facilitate safe trade and support the improvement of disease control measures, which is of great importance as the cattle sector contributes to one third of the total gross production value of EU agriculture

    Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome

    No full text
    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers

    Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency (CMMRD) Syndrome

    No full text
    Monoallelic PMS2 germline mutations cause 5-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional MMR deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/ MSI (immunohistochemistry/ microsatellite-instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro MMR assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor pre-screening methods will however miss some PMS2 germline mutation carriers. This article is protected by copyright. All rights reserved

    Overview of cattle diseases listed under category C, D or E in the Animal Health Law (AHL) for which control programmes are in place within Europe

    Get PDF
    The COST action “Standardizing output-based surveillance to control non-regulated diseases of cattle in the European Union (SOUND control)”, aims to harmonize the results of surveillance and control programmes (CPs) for non-EU regulated cattle diseases to facilitate safe trade and improve overall control of cattle infectious diseases. In this paper we aimed to provide an overview on the diversity of control for these diseases in Europe. A non-EU regulated cattle disease was defined as an infectious disease of cattle with no or limited control at EU level, which is not included in the European Union Animal health law Categories A or B under Commission Implementing Regulation (EU) 2020/2002. A CP was defined as surveillance and/or intervention strategies designed to lower the incidence, prevalence, mortality or prove freedom from a specific disease in a region or country. Passive surveillance, and active surveillance of breeding bulls under Council Directive 88/407/EEC were not considered as CPs. A questionnaire was designed to obtain country-specific information about CPs for each disease. Animal health experts from 33 European countries completed the questionnaire. Overall, there are 23 diseases for which a CP exists in one or more of the countries studied. The diseases for which CPs exist in the highest number of countries are enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis, bovine viral diarrhoea and anthrax (CPs reported by between 16 and 31 countries). Every participating country has on average, 6 CPs (min-max: 1-13) in place. Most programmes are implemented at a national level (86%) and are applied to both dairy and non-dairy cattle (75%). Approximately one-third of the CPs are voluntary, and the funding structure is divided between government and private resources. Countries that have eradicated diseases like enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis and bovine viral diarrhoea have implemented CPs for other diseases to further improve thehealth status of cattle in their country. The control of non-EU regulated cattle diseases is very heterogenous in Europe. Therefore, the standardizing of the outputs of these programmes to enable comparison represents a challenge

    Overview of Cattle Diseases Listed Under Category C, D or E in the Animal Health Law for Which Control Programmes Are in Place Within Europe

    Get PDF
    The COST action “Standardising output-based surveillance to control non-regulated diseases of cattle in the European Union (SOUND control),” aims to harmonise the results of surveillance and control programmes (CPs) for non-EU regulated cattle diseases to facilitate safe trade and improve overall control of cattle infectious diseases. In this paper we aimed to provide an overview on the diversity of control for these diseases in Europe. A non-EU regulated cattle disease was defined as an infectious disease of cattle with no or limited control at EU level, which is not included in the European Union Animal health law Categories A or B under Commission Implementing Regulation (EU) 2020/2002. A CP was defined as surveillance and/or intervention strategies designed to lower the incidence, prevalence, mortality or prove freedom from a specific disease in a region or country. Passive surveillance, and active surveillance of breeding bulls under Council Directive 88/407/EEC were not considered as CPs. A questionnaire was designed to obtain country-specific information about CPs for each disease. Animal health experts from 33 European countries completed the questionnaire. Overall, there are 23 diseases for which a CP exists in one or more of the countries studied. The diseases for which CPs exist in the highest number of countries are enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis, bovine viral diarrhoea and anthrax (CPs reported by between 16 and 31 countries). Every participating country has on average, 6 CPs (min–max: 1–13) in place. Most programmes are implemented at a national level (86%) and are applied to both dairy and non-dairy cattle (75%). Approximately one-third of the CPs are voluntary, and the funding structure is divided between government and private resources. Countries that have eradicated diseases like enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis and bovine viral diarrhoea have implemented CPs for other diseases to further improve the health status of cattle in their country. The control of non-EU regulated cattle diseases is very heterogenous in Europe. Therefore, the standardising of the outputs of these programmes to enable comparison represents a challenge
    corecore