13 research outputs found

    Adenomatous polyposis coli-mediated control of β-catenin is essential for both chondrogenic and osteogenic differentiation of skeletal precursors

    Get PDF
    Background: During skeletogenesis, protein levels of β-catenin in the canonical Wnt signaling pathway determine lineage commitment of skeletal precursor cells to osteoblasts and chondrocytes. Adenomatous polyposis coli (Apc) is a key controller of β-catenin turnover by down-regulating intracellular levels of β-catenin. Results: To investigate whether Apc is involved in lineage commitment of skeletal precursor cells, we generated conditional knockout mice lacking functional Apc in Col2a1-expressing cells. In contrast to other models in which an oncogenic variant of β-catenin was used, our approach resulted in the accumulation of wild type β-catenin protein due to functional loss of Apc. Conditional homozygous Apc mutant mice died perinatally showing greatly impaired skeletogenesis. All endochondral bones were misshaped and lacked structural integrity. Lack of functional Apc resulted in a pleiotropic skeletal cell phenotype. The majority of the precursor cells lacking Apc failed to differentiate into chondrocytes or osteoblasts. However, skeletal precursor cells in the proximal ribs were able to escape the noxious effect of functional loss of Apc resulting in formation of highly active osteoblasts. Inactivation of Apc in chondrocytes was associated with dedifferentiation of these cells. Conclusion: Our data indicate that a tight Apc-mediated control of β-catenin levels is essential for differentiation of skeletal precursors as well as for the maintenance of a chondrocytic phenotype in a spatio-temporal regulated manner

    Familial Adenomatous Polyposis-Associated Desmoids Display Significantly More Genetic Changes than Sporadic Desmoids

    Get PDF
    Desmoid tumours (also called deep or aggressive fibromatoses) are potentially life-threatening fibromatous lesions. Hereditary desmoid tumours arise in individuals affected by either familial adenomatous polyposis (FAP) or hereditary desmoid disease (HDD) carrying germline mutations in APC. Most sporadic desmoids carry somatic mutations in CTNNB1. Previous studies identified losses on 5q and 6q, and gains on 8q and 20q as recurrent genetic changes in desmoids. However, virtually all genetic changes were derived from sporadic tumours. To investigate the somatic alterations in FAP-associated desmoids and to compare them with changes occurring in sporadic tumours, we analysed 17 FAP-associated and 38 sporadic desmoids by array comparative genomic hybridisation and multiple ligation-dependent probe amplification. Overall, the desmoids displayed only a limited number of genetic changes, occurring in 44% of cases. Recurrent gains at 8q (7%) and 20q (5%) were almost exclusively found in sporadic tumours. Recurrent losses were observed for a 700 kb region at 5q22.2, comprising the APC gene (11%), a 2 Mb region at 6p21.2-p21.1 (15%), and a relatively large region at 6q15-q23.3 (20%). The FAP-associated desmoids displayed a significantly higher frequency of copy number abnormalities (59%) than the sporadic tumours (37%). As predicted by the APC germline mutations among these patients, a high percentage (29%) of FAP-associated desmoids showed loss of the APC region at 5q22.2, which was infrequently (3%) seen among sporadic tumours. Our data suggest that loss of region 6q15-q16.2 is an important event in FAP-associated as well as sporadic desmoids, most likely of relevance for desmoid tumour progression

    Germline Mutation of INI1/SMARCB1 in Familial Schwannomatosis

    Get PDF
    Patients with schwannomatosis develop multiple schwannomas but no vestibular schwannomas diagnostic of neurofibromatosis type 2. We report an inactivating germline mutation in exon 1 of the tumor-suppressor gene INI1 in a father and daughter who both had schwannomatosis. Inactivation of the wild-type INI1 allele, by a second mutation in exon 5 or by clear loss, was found in two of four investigated schwannomas from these patients. All four schwannomas displayed complete loss of nuclear INI1 protein expression in part of the cells. Although the exact oncogenetic mechanism in these schwannomas remains to be elucidated, our findings suggest that INI1 is the predisposing gene in familial schwannomatosis

    Association of C-MYC amplification with progression from the in situ to the invasive stage in C-MYC-amplified breast carcinomas

    No full text
    Human carcinoma in situ of the breast already demonstrates genomic changes found in invasive lesions. However, no specific genetic alterations have previously been identified that are associated with progression from the in situ to the invasive stage. By comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) analysis of an invasive breast carcinoma with a large associated in situ component, high-level amplification of C-MYC was found in the invasive component only. To determine the frequency of this correlation in a panel of 188 invasive breast carcinomas, 18 additional cases with C-MYC amplification were identified. Nine of these cases had a detectable adjacent in situ component. FISH analysis demonstrated increased (>5) C-MYC signals per nucleus in seven invasive components and increased (>4) C-MYC/centromere 8 signal ratios in five of these. None of the associated in situ components demonstrated these increases. The minimal amplified region was defined at 8q24.13-8qter. C-MYC amplification was correlated with overexpression of C-MYC and two of its target genes, TERT and FBL. Thus, C-MYC amplification is the first identified genetic alteration that is associated with progression from the in situ to the invasive stage of breast carcinom

    A new conditional Apc-mutant mouse model for colorectal cancer

    No full text
    Mutations of the adenomatous polyposis coli (APC) gene predispose individuals to familial adenomatous polyposis (FAP), characterized by multiple tumours in the large intestine. Most mouse models heterozygous for truncating mutant Apc alleles mimic FAP, however, the intestinal tumours occur mainly in the small intestine. To model large intestinal tumours, we generated a new conditional Apc-mutant allele, Apc15lox, with exon 15 flanked by loxP sites. Similar survival of Apc1638N/15loxand Apc1638N/1mice indicated that the normal function of Apc was not impaired by the loxP sites. Deletion of exon 15, encoding nearly all functional Apc domains and containing the polyadenylation signal, resulted in a mutant allele expressing low levels of a 74 kDa truncated Apc protein. Germ line Cre-mediated deletion of exon 15 resulted in ApcD15/1mice, showing a severe ApcMin/1-like phenotype characterized by multiple tumours in the small intestine and early lethality. In contrast, conditional Cre-mediated deletion of exon 15 specifically directed to the epithelia of distal small and large intestine of FabplCre;Apc15lox/1mice led to longer survival and to tumours that developed predominantly in the large intestine, mimicking human FAP-associated colorectal cancer and sporadic colorectal cancer. We conclude that the FabplCre;Apc15lox/1mouse should be an attractive model for studies on prevention and treatment of colorectal cancer
    corecore