38 research outputs found

    Quantification of in vivo colonic short chain fatty acid production from inulin

    Get PDF
    Short chain fatty acids ( SCFA), including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [ 1- C-13] acetate, [ 1- C-13] propionate and [ 1- C-13] butyrate ( 12, 1.2 and 0.6 mu mol center dot kg - 1 center dot min - 1, respectively) was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 +/- 4.8, 0.27 +/- 0.09, and 0.28 +/- 0.12 mu mol center dot kg - 1 center dot min (-1), respectively. Colonic inulin fermentation was estimated to be 137 +/- 75 mmol acetate, 11 +/- 9 mmol propionate, and 20 +/- 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production

    Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers : a double-blind, randomised, placebo-controlled, cross-over trial

    Get PDF
    Wheat bran extract (WBE) is a food-grade soluble fibre preparation that is highly enriched in arabinoxylan oligosaccharides. In this placebo-controlled cross-over human intervention trial, tolerance and effects on colonic protein and carbohydrate fermentation were studied. After a 1-week run-in period, sixty-three healthy adult volunteers consumed 3, 10 and 0 g WBE/d for 3 weeks in a random order, with 2 weeks' washout between each treatment period. Fasting blood samples were collected at the end of the run-in period and at the end of each treatment period for analysis of haematological and clinical chemistry parameters. Additionally, subjects collected a stool sample for analysis of microbiota, SCFA and pH. A urine sample, collected over 48 h, was used for analysis of p-cresol and phenol content. Finally, the subjects completed questionnaires scoring occurrence frequency and distress severity of eighteen gastrointestinal symptoms. Urinary p-cresol excretion was significantly decreased after WBE consumption at 10 g/d. Faecal bifidobacteria levels were significantly increased after daily intake of 10 g WBE. Additionally, WBE intake at 10 g/d increased faecal SCFA concentrations and lowered faecal pH, indicating increased colonic fermentation of WBE into desired metabolites. At 10 g/d, WBE caused a mild increase in flatulence occurrence frequency and distress severity and a tendency for a mild decrease in constipation occurrence frequency. In conclusion, WBE is well tolerated at doses up to 10 g/d in healthy adults volunteers. Intake of 10 g WBE/d exerts beneficial effects on gut health parameters

    Contribution of Colonic Fermentation and Fecal Water Toxicity to the Pathophysiology of Lactose-Intolerance

    No full text
    Whether or not abdominal symptoms occur in subjects with small intestinal lactose malabsorption might depend on differences in colonic fermentation. To evaluate this hypothesis, we collected fecal samples from subjects with lactose malabsorption with abdominal complaints (LM-IT, n = 11) and without abdominal complaints (LM-T, n = 8) and subjects with normal lactose digestion (NLD, n = 15). Lactose malabsorption was diagnosed using a (13)C-lactose breath test. Colonic fermentation was characterized in fecal samples at baseline and after incubation with lactose for 3 h, 6 h and 24 h through a metabolomics approach using gas chromatography-mass spectrometry (GC-MS). Fecal water cytotoxicity was analyzed using a colorimetric assay. Fecal water cytotoxicity was not different between the three groups (Kruskall-Wallis p = 0.164). Cluster analysis of the metabolite patterns revealed separate clusters for NLD, LM-T and LM-IT samples at baseline and after 24 h incubation with lactose. Levels of 5-methyl-2-furancarboxaldehyde were significantly higher in LM-IT and LM-T compared to NLD whereas those of an unidentified aldehyde were significantly higher in LM-IT compared to LM-T and NLD. Incubation with lactose increased short chain fatty acid (SCFA) concentrations more in LM-IT and LM-T compared to NLD. In conclusion, fermentation patterns were clearly different in NLD, LM-IT and LM-T, but not related to differences in fecal water cytotoxicity.status: publishe

    Additional Value of CH4 Measurement in a Combined 13C/H2 Lactose Malabsorption Breath Test: A Retrospective Analysis

    No full text
    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H2) excretion after an oral dose of lactose. We use a combined 13C/H2 lactose breath test that measures breath 13CO2 as a measure of lactose digestion in addition to H2 and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 13C/H2 lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH4 in addition to H2 and 13CO2. Based on the 13C/H2 breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH4 further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H2-excretion were found to excrete CH4. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH4-concentrations has an added value to the 13C/H2 breath test to identify methanogenic subjects with lactose malabsorption or SIBO

    Analytical Performance of the RIDASCREEN (R) Hantavirus Puumala IgG/IgM ELISA Assay

    No full text
    The National Reference Center for Hantavirus in Belgium is currently using the Hantavirus IgM/IgG ELISA Progen kit (Heidelberg, Germany) for the detection of the most prevalent Hantavirus in Western Europe, Puumala virus (PUUV). Two commercially available PUUV kits were compared: Progen and RIDASCREEN® Hantavirus Puumala IgM/IgG ELISA assay (Darmstadt, Germany). METHODS: The sensitivity was evaluated with a panel of 68 samples from patients with an acute infection (n = 44) or a past infection (n = 24). Specificity was evaluated with a panel of 62 samples from patients with potentially false borderline results (n = 7) (no seroconversion), seronegative samples (n = 25) and potentially cross reacting samples (n = 30). Discordances were resolved by immunoblot. Substantial agreement was calculated using Cohen kappa coefficient. RESULTS: The RIDASCREEN® kit showed a higher specificity (IgM: 94.3%; IgG: 94.4%) than the Progen kit (IgM: 77.0% IgG: 93.0%). The sensitivity for IgM ELISA was 100% for both assays. IgG sensitivity was, respectively, 98.3% and 100% for Progen and RIDASCREEN®. A Cohen kappa coefficient of 0.76 and 0.90 was found between Puumala IgM and IgG, respectively. CONCLUSIONS: This study showed a higher specificity for the RIDASCREEN® kit than the Progen kit, while the sensitivity was as good as for the Progen kit.status: publishe

    Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin

    No full text
    Short chain fatty acids (SCFA), including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-(13)C]acetate, [1-(13)C]propionate and [1-(13)C]butyrate (12, 1.2 and 0.6 μmol·kg(-1)·min(-1), respectively) was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 μmol·kg(-1)·min(-1), respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.status: publishe
    corecore