57 research outputs found
Spontaneous healing of Mycobacterium ulcerans lesions in the guinea pig model
Buruli Ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans infection. BU is characterized by a wide range of clinical forms, including non-ulcerative cutaneous lesions that can evolve into severe ulcers if left untreated. Nevertheless, spontaneous healing has been reported to occur, although knowledge on this process is scarce both in naturally infected humans and experimental models of infection. Animal models are useful since they mimic different spectrums of human BU disease and have the potential to elucidate the pathogenic/protective pathway(s) involved in disease/healing. In this time-lapsed study, we characterized the guinea pig, an animal model of resistance to M. ulcerans, focusing on the macroscopic, microbiological and histological evolution throughout the entire experimental infectious process. Subcutaneous infection of guinea pigs with a virulent strain of M. ulcerans led to early localized swelling, which evolved into small well defined ulcers. These macroscopic observations correlated with the presence of necrosis, acute inflammatory infiltrate and an abundant bacterial load. By the end of the infectious process when ulcerative lesions healed, M. ulcerans viability decreased and the subcutaneous tissue organization returned to its normal state after a process of continuous healing characterized by tissue granulation and reepethelialization. In conclusion, we show that the experimental M. ulcerans infection of the guinea pig mimics the process of spontaneous healing described in BU patients, displaying the potential to uncover correlates of protection against BU, which can ultimately contribute to the development of new prophylactic and therapeutic strategies.The research leading to these results has received funding from the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement No 241500 (BuruliVac). This work was additionally financed from the Health Services of the Fundacao Calouste Gulbenkian under the grant Proc.No94776 LJ; from the Fundacao para a Ciencia e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2-O Novo Norte); from the Quadro de Referencia Estrategico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto Estrategico - LA 26 - 2013-2014 (PEst-C/SAU/LA0026/2013). A.G. Fraga and G. Trigo received an individual FCT fellowship (SFRH/BPD/68547/2010 and SFRH/BPD/64032/2009), C.M. Goncalves received an individual QREN fellowship (UMINHO/BPD/40/2013), and E. Marcq received funding from the Life Long Learning Erasmus program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
The MexTAg collaborative cross: host genetics affects asbestos related disease latency, but has little influence once tumours develop
Objectives: This study combines two innovative mouse models in a major gene discovery project to assess the influence of host genetics on asbestos related disease (ARD). Conventional genetics studies provided evidence that some susceptibility to mesothelioma is genetic. However, the identification of host modifier genes, the roles they may play, and whether they contribute to disease susceptibility remain unknown. Here we report a study designed to rapidly identify genes associated with mesothelioma susceptibility by combining the Collaborative Cross (CC) resource with the well-characterised MexTAg mesothelioma mouse model.Methods: The CC is a powerful mouse resource that harnesses over 90% of common genetic variation in the mouse species, allowing rapid identification of genes mediating complex traits. MexTAg mice rapidly, uniformly, and predictably develop mesothelioma, but only after asbestos exposure. To assess the influence of host genetics on ARD, we crossed 72 genetically distinct CC mouse strains with MexTAg mice and exposed the resulting CC-MexTAg (CCMT) progeny to asbestos and monitored them for traits including overall survival, the time to ARD onset (latency), the time between ARD onset and euthanasia (disease progression) and ascites volume. We identified phenotype-specific modifier genes associated with these traits and we validated the role of human orthologues in asbestos-induced carcinogenesis using human mesothelioma datasets.Results: We generated 72 genetically distinct CCMT strains and exposed their progeny (2,562 in total) to asbestos. Reflecting the genetic diversity of the CC, there was considerable variation in overall survival and disease latency. Surprisingly, however, there was no variation in disease progression, demonstrating that host genetic factors do have a significant influence during disease latency but have a limited role once disease is established. Quantitative trait loci (QTL) affecting ARD survival/latency were identified on chromosomes 6, 12 and X. Of the 97-protein coding candidate modifier genes that spanned these QTL, eight genes (CPED1, ORS1, NDUFA1, HS1BP3, IL13RA1, LSM8, TES and TSPAN12) were found to significantly affect outcome in both CCMT and human mesothelioma datasets.Conclusion: Host genetic factors affect susceptibility to development of asbestos associated disease. However, following mesothelioma establishment, genetic variation in molecular or immunological mechanisms did not affect disease progression. Identification of multiple candidate modifier genes and their human homologues with known associations in other advanced stage or metastatic cancers highlights the complexity of ARD and may provide a pathway to identify novel therapeutic targets
Building a Bridge between Chemotherapy and Immunotherapy in Malignant Pleural Mesothelioma: Investigating the Effect of Chemotherapy on Immune Checkpoint Expression
In light of the promising results of immune checkpoint blockade (ICPB) in malignant pleural mesothelioma (MPM), we investigated the effect of different chemotherapeutic agents on the expression of immune checkpoints (ICPs) in order to rationally design a good treatment schedule for their combination with ICP blocking antibodies. Cisplatin, oxaliplatin and pemetrexed are interesting chemotherapeutic agents to combine with immunotherapy given their immunomodulatory capacities. We looked into cisplatin and pemetrexed because their combination is used as first-line treatment of MPM. Additionally, the effect of the immunogenic chemotherapeutic agent, oxaliplatin, was also studied. Three different MPM cell lines were used for representation of both epithelioid and sarcomatoid subtypes. The desired inhibitory concentrations of the chemotherapeutic agents were determined with the SRB-assay. Allogeneic co-cultures of MPM cells with healthy donor peripheral blood mononuclear cells (PBMC) were set up to assess the effect of these chemotherapeutic agents on the expression of ICPs (PD-1, LAG-3, TIM-3) and their ligands (PD-L1, PD-L2, galectin-9). Cisplatin might be a promising treatment to combine with ICP blocking antibodies since our MPM cell lines were most susceptible to this stand-alone treatment. We found that the expression of ICPs and their ligands on both MPM cells and PBMC was mostly downregulated or unaltered when treated with chemotherapeutic agents, though no clear trend could be determined
- …