467 research outputs found

    Confinement with Kalb - Ramond Fields

    Get PDF
    We consider models with N U(1) gauge fields A_{\mu}^n, N Kalb-Ramond fields B_{\mu \nu}^n, an arbitrary bare action and a fixed UV cutoff \Lambda. Under mild assumptions these can be obtained as effective low energy theories of SU(N+1) Yang Mills theories in the maximal abelian gauge. For a large class of bare actions they can be solved in the large N limit and exhibit confinement. The confining phase is characterized by an approximate ``low energy'' vector gauge symmetry under which the Kalb-Ramond fields B_{\mu\nu}^n transform. The same symmetry allows for a duality transformation showing that magnetic monopoles have condensed. The models allow for various mechanisms of confinement, depending on which sources for A_{\mu}^n or B_{\mu \nu}^n are switched on, but the area law for the Wilson loop is obtained in any case.Comment: corrected misprints and reference

    Confinement and Mass Gap in Abelian Gauge

    Get PDF
    First, we present a simple confining abelian pure gauge theory. Classically, its kinetic term is not positive definite, and it contains a simple UV regularized F^4 interaction. This provoques the formation of a condensate ~ F^2 such that, at the saddle point of the effective potential, the wave function normalization constant of the abelian gauge fields vanishes exactly. Then we study SU(2) pure Yang-Mills theory in an abelian gauge and introduce an additional auxiliary field for a BRST invariant condensate of dimension 2, which renders the charged sector massive. Under simple assumptions its effective low energy theory reduces to the confining abelian model discussed before, and the vev of rho is seen to scale correctly with the renormalization point. Under these assumptions, the confinement condition Z_eff = 0 also holds for the massive charged sector, which suppresses the couplings of the charged fields to the abelian gauge bosons in the infrared regime.Comment: Explanations added, to appear in Eur. Phys. J.

    CDF Multi-Muon Events and Singlet Extensions of the MSSM

    Full text link
    We discuss a generalization of the minimal supersymmetric extension of the Standard Model in the form of three additional singlet superfields, which would explain the essential features of the CDF multi-muon events presented recently: a large production cross section of ~ 100 pb originates from the production of a CP-odd scalar A with a mass in the 70 - 80 GeV range and a large value of tan(beta) ~ 40. The CP-odd scalar A decays dominantly into CP-odd and CP-even scalars a_1 and h_1, which generate decay cascades h_1 -> 2 h_2 -> 4 a_2 -> 8 tau-leptons, and a_1 -> h_1 a_2 with h_1 decaying as above. The decay a_2 -> tau+ tau- is slow, leading to a lifetime of O(20) ps. The phenomenology of the model differs from similar scenarios presented before in that one of the two cascades leads to 10 instead of 8 tau-leptons, and additional production processes like associate A production with b b-bar pairs are relevant.Comment: 10 pages, comments on the required total cross section added, to appear in MPL

    The Higgs Sector in a U(1)U(1)^\prime Extension of the MSSM

    Full text link
    We consider the Higgs sector in an extension of the MSSM with extra SM singlets, involving an extra U(1)U(1)^\prime gauge symmetry, in which the domain-wall problem is avoided and the effective μ\mu parameter is decoupled from the new gauge boson ZZ^\prime mass. The model involves a rich Higgs structure very different from that of the MSSM. In particular, there are large mixings between Higgs doublets and the SM singlets, significantly affecting the Higgs spectrum, production cross sections, decay modes, existing exclusion limits, and allowed parameter range. Scalars considerably lighter than the LEP2 bound (114 GeV) are allowed, and the range tanβ1\tan \beta \sim 1 is both allowed and theoretically favored. Phenomenologically, we concentrate our study on the lighter (least model-dependent, yet characteristic) Higgs particles with significant SU(2)-doublet components to their wave functions, for the case of no explicit CP violation in the Higgs sector. We consider their spectra, including the dominant radiative corrections to their masses from the top/stop loop. We computed their production cross sections and reexamine the existing exclusion limits at LEP2. We outline the searching strategy for some representative scenarios at a future linear collider. We emphasize that gaugino, Higgsino, and singlino decay modes are indicative of extended models and have been given little attention. We present a comprehensive list of model scenarios in the Appendices.Comment: 49 pages, 17 figure

    Flow Equations for N Point Functions and Bound States

    Full text link
    We discuss the exact renormalization group or flow equation for the effective action and its decomposition into one particle irreducible N point functions. With the help of a truncated flow equation for the four point function we study the bound state problem for scalar fields. A combination of analytic and numerical methods is proposed, which is applied to the Wick-Cutkosky model and a QCD-motivated interaction. We present results for the bound state masses and the Bethe-Salpeter wave function. (Figs. 1-4 attached as separate uuencoded post-script files.)Comment: 17 pages, HD-THEP-93-3

    Gauge Dependence of the Effective Average Action in Einstein Gravity

    Get PDF
    We study the gauge dependence of the effective average action Gamma_k and Newtonian gravitational constant using the RG equation for Gamma_k. Then we truncate the space of action functionals to get a solution of this equation. We solve the truncated evolution equation for the Einstein gravity in the De Sitter background for a general gauge parameter alpha and obtain a system of equations for the cosmological and the Newtonian constants. Analyzing the running of the gravitational constant we find that the Newtonian constant depends strongly on the gauge parameter. This leads to the appearance of antiscreening and screening behavior of the quantum gravity. The resolution of the gauge dependence problem is suggested. For physical gauges like the Landau-De Witt gauge the Newtonian constant shows an antiscreening.Comment: 19 pages, LaTeX, 1 figure, misprints correcte

    Possibility of spontaneous CP violation in the nonminimal supersymmetric standard model with two neutral Higgs singlets

    Full text link
    A supersymmetric standard model with two Higgs doublets and two Higgs singlets is investigated if it can accommodate the possibility of spontaneous CP violation. Assuming the degeneracy of the scalar quark masses of the third generation, we find that spontaneous CP violation in the Higgs sector is viable in our model. In the case of spontaneous CP violation, the masses of the lightest two neutral Higgs bosons are estimated to be 80 and 125 GeV for some parameter values in our model, which, are consistent with LEP2 data.Comment: 18 pages, 3figure

    Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results

    Get PDF
    We study the fine tuning in the parameter space of the semi-constrained NMSSM, where most soft Susy breaking parameters are universal at the GUT scale. We discuss the dependence of the fine tuning on the soft Susy breaking parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays. Whereas these latter scenarios allow a priori for considerably less fine tuning than the constrained MSSM, the early LHC results rule out a large part of the parameter space of the semi-constrained NMSSM corresponding to low values of the fine tuning.Comment: 19 pages, 10 figures, bounds from Susy searches with ~1/fb include

    Loop-induced photon spectral lines from neutralino annihilation in the NMSSM

    Full text link
    We have computed the loop-induced processes of neutralino annihilation into two photons and, for the first time, into a photon and a Z boson in the framework of the NMSSM. The photons produced from these radiative modes are monochromatic and possess a clear "smoking gun" experimental signature. This numerical analysis has been done with the help of the SloopS code, initially developed for automatic one-loop calculation in the MSSM. We have computed the rates for different benchmark points coming from SUGRA and GMSB soft SUSY breaking scenarios and compared them with the MSSM. We comment on how this signal can be enhanced, with respect to the MSSM, especially in the low mass region of the neutralino. We also discuss the possibility of this observable to constrain the NMSSM parameter space, taking into account the latest limits from the FERMI collaboration on these two modes.Comment: 18 pages, 3 figures. Minor clarifications added in the text. Typing mistakes and references corrected. Matches published versio

    Non-Perturbative Renormalization Group calculation of the scalar self-energy

    Get PDF
    We present the first numerical application of a method that we have recently proposed to solve the Non Perturbative Renormalization Group equations and obtain the n-point functions for arbitrary external momenta. This method leads to flow equations for the n-point functions which are also differential equations with respect to a constant background field. This makes them, a priori, difficult to solve. However, we demonstrate in this paper that, within a simple approximation which turns out to be quite accurate, the solution of these flow equations is not more complicated than that of the flow equations obtained in the derivative expansion. Thus, with a numerical effort comparable to that involved in the derivative expansion, we can get the full momentum dependence of the n-point functions. The method is applied, in its leading order, to the calculation of the self-energy in a 3-dimensional scalar field theory, at criticality. Accurate results are obtained over the entire range of momenta.Comment: 29 page
    corecore