742 research outputs found

    Sfermion decays into singlets and singlinos in the NMSSM

    Full text link
    We investigate how the addition of the singlet Higgs field in the NMSSM changes the sfermion branching ratios as compared to the MSSM. We concentrate in particular on the third generation, discussing decays of the heavier stop, sbottom or stau into the lighter mass eigenstate plus a scalar or pseudoscalar singlet Higgs. We also analyse stop, sbottom and stau decays into singlinos. It turns out that the branching ratios of these decays can be large, markedly influencing the sfermion phenomenology in the NMSSM. Moreover, we consider decays of first and second generation sfermions into singlinos.Comment: 10 pages, 4 figures; a few additional remarks on the model, version to be publishe

    Brane Universes and the Cosmological Constant

    Full text link
    The cosmological constant problem and brane universes are reviewed briefly. We discuss how the cosmological constant problem manifests itself in various scenarios for brane universes. We review attempts - and their difficulties - that aim at a solution of the cosmological constant problem.Comment: corrected typos, added references, 13 pages, accepted by MPLA as brief revie

    Modified Signals for Supersymmetry in the NMSSM with a Singlino-like LSP

    Get PDF
    In the framework of the NMSSM with a singlino-like LSP, we study quantitatively the impact of the additional bino -> singlino cascade on the efficiencies in several search channels for supersymmetry of the ATLAS and CMS collaborations. Compared to the MSSM, the additional cascade reduces the missing transverse energy, but leads to additional jets or leptons. For the NMSSM benchmark lines which generalize cMSSM benchmark points, the efficiencies in the most relevant 2/3 jet + missing energy search channels can drop by factors ~1/3 to ~1/7, and can reduce the present lower bounds on M_{1/2} by as much as ~0.9 - 0.75 in the NMSSM for large bino-singlino mass differences. The larger efficiencies in multijet or multilepton search channels are not strong enough to affect this conclusion. In the fully constrained cNMSSM, sparticle decay cascades via the lightest stau can lead to signal cross sections in multilepton and 2tau search channels which are potentially visible at the LHC with 7 TeV center of mass energy.Comment: 24 pages, 9 Figures, misprint in Table 1 correcre

    Discovering the constrained NMSSM with tau leptons at the LHC

    Full text link
    The constrained Next-to-Minimal Supersymmetric Standard Model (cNMSSM) with mSugra-like boundary conditions at the GUT scale implies a singlino-like LSP with a mass just a few GeV below a stau NLSP. Hence, most of the squark/gluino decay cascades contain two tau leptons. The gluino mass >~ 1.2 TeV is somewhat larger than the squark masses of >~ 1 TeV. We simulate signal and background events for such a scenario at the LHC, and propose cuts on the transverse momenta of two jets, the missing transverse energy and the transverse momentum of a hadronically decaying tau lepton. This dedicated analysis allows to improve on the results of generic supersymmetry searches for a large part of the parameter space of the cNMSSM. The distribution of the effective mass and the signal rate provide sensitivity to distinguish the cNMSSM from the constrained Minimal Supersymmetric Standard Model in the stau-coannihilation region.Comment: 18 pages, 3 Figure

    NMSSM Higgs Discovery at the LHC

    Full text link
    We demonstrate that Higgs discovery at the LHC is possible in the context of the NMSSM even for those scenarios such that the only strongly produced Higgs boson is a very SM-like CP-even scalar which decays almost entirely to a pair of relatvely light CP-odd states. In combination with other search channels, we are on the verge of demonstrating that detection of at least one of the NMSSM Higgs bosons is guaranteed at the LHC for accumulated luminosity of 300fb1300 {\rm fb}^{-1}.Comment: 8 pages, 1 figure, to appear in the Proceedings of the Les Houches Workshop 2003: ``Physics at TeV Colliders'

    Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results

    Get PDF
    We study the fine tuning in the parameter space of the semi-constrained NMSSM, where most soft Susy breaking parameters are universal at the GUT scale. We discuss the dependence of the fine tuning on the soft Susy breaking parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays. Whereas these latter scenarios allow a priori for considerably less fine tuning than the constrained MSSM, the early LHC results rule out a large part of the parameter space of the semi-constrained NMSSM corresponding to low values of the fine tuning.Comment: 19 pages, 10 figures, bounds from Susy searches with ~1/fb include

    An origin for small neutrino masses in the NMSSM

    Get PDF
    We consider the Next to Minimal Supersymmetric Standard Model (NMSSM) which provides a natural solution to the so-called mu problem by introducing a new gauge-singlet superfield S. We realize that a new mechanism of neutrino mass suppression, based on the R-parity violating bilinear terms mu_i L_i H_u mixing neutrinos and higgsinos, arises within the NMSSM, offering thus an original solution to the neutrino mass problem (connected to the solution for the mu problem). We generate realistic (Majorana) neutrino mass values without requiring any strong hierarchy amongst the fundamental parameters, in contrast with the alternative models. In particular, the ratio |mu_i/mu| can reach about 10^-1, unlike in the MSSM where it has to be much smaller than unity. We check that the obtained parameters also satisfy the collider constraints and internal consistencies of the NMSSM. The price to pay for this new cancellation-type mechanism of neutrino mass reduction is a certain fine tuning, which get significantly improved in some regions of parameter space. Besides, we discuss the feasibility of our scenario when the R-parity violating bilinear terms have a common origin with the mu term, namely when those are generated via a VEV of the S scalar component from the couplings lambda_i S L_i H_u. Finally, we make comments on some specific phenomenology of the NMSSM in the presence of R-parity violating bilinear terms.Comment: 21 pages, 5 figures, Latex fil

    Phenomenology of the General NMSSM with Gauge Mediated Supersymmetry Breaking

    Get PDF
    We investigate various classes of Gauge Mediated Supersymmetry Breaking models and show that the Next-to-Minimal Supersymmetric Standard Model can solve the mu-problem in a phenomenologically acceptable way. These models include scenarios with singlet tadpole terms, which are phenomenologically viable, e.g., in the presence of a small Yukawa coupling <~ 10^{-5}. Scenarios with suppressed trilinear A-terms at the messenger scale lead naturally to light CP-odd scalars, which play the r\^ole of pseudo R-axions. A wide range of parameters of such models satisfies LEP constraints, with CP-even Higgs scalars below 114 GeV decaying dominantly into a pair of CP-odd scalars.Comment: 24 pages, 6 figures, typos corrected, reference adde

    Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors

    Full text link
    The most recent LHC data have provided a considerable improvement in the precision with which various Higgs production and decay channels have been measured. Using all available public results from ATLAS, CMS and the Tevatron, we derive for each final state the combined confidence level contours for the signal strengths in the (gluon fusion + ttH associated production) versus (vector boson fusion + VH associated production) space. These "combined signal strength ellipses" can be used in a simple, generic way to constrain a very wide class of New Physics models in which the couplings of the Higgs boson deviate from the Standard Model prediction. Here, we use them to constrain the reduced couplings of the Higgs boson to up-quarks, down-quarks/leptons and vector boson pairs. We also consider New Physics contributions to the loop-induced gluon-gluon and photon-photon couplings of the Higgs, as well as invisible/unseen decays. Finally, we apply our fits to some simple models with an extended Higgs sector, in particular to Two-Higgs-Doublet models of Type I and Type II, the Inert Doublet model, and the Georgi-Machacek triplet Higgs model.Comment: 31 pages, 15 figures; v2: fixed important factor of 2 missing in Eq. (1) (results unchanged), extended discussion in the next-to-last paragraph of Section 3, some references added; v3: appendices and references added, matches version accepted by PR

    Two Higgs Bosons at the Tevatron and the LHC?

    Full text link
    The best fit to the Tevatron results in the bb channel and the mild excesses at CMS in the gamma-gamma channel at 136 GeV and in the tau-tau channel above 132 GeV can be explained by a second Higgs state in this mass range, in addition to the one at 125 GeV recently discovered at the LHC. We show that a scenario with two Higgs bosons at 125 GeV and 136 GeV can be consistent with practically all available signal rates, including a reduced rate in the tau-tau channel around 125 GeV as reported by CMS. An example in the parameter space of the general NMSSM is given where, moreover, the signal rates of the 125 GeV Higgs boson in the gamma-gamma channels are enhanced relative to the expectation for a SM Higgs boson of this mass.Comment: 13 pages, 4 Table
    corecore