431 research outputs found

    Plant species richness, elevated CO 2 , and atmospheric nitrogen deposition alter soil microbial community composition and function

    Full text link
    We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO 2 and nitrogen (N) deposition treatments. Because elevated CO 2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO 2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO 2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO 2 and ambient N, or ambient CO 2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO 2 . In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO 2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72693/1/j.1365-2486.2007.01313.x.pd

    Are chlorophyll concentrations and nitrogen across the vertical canopy profile affected by elevated CO2 in mature Quercus trees?

    Get PDF
    Key message: In mature Q. robur, chlorophyll varied with season and canopy height, whilst eCO2-driven changes were consistent with Marea, highlighting key factors for consideration when scaling photosynthetic processes and canopy N-use. Nitrogen-rich chlorophyll and carotenoid pigments are important in photosynthetic functioning. Photosynthetic pigments have been found to decrease with elevated CO2 (eCO2), but few such studies have been done in aged forest trees. This study aimed to assess the effects of eCO2 (150Ă‚Â ÎŒmol mol−1 above ambient) and canopy position on chlorophyll content in mature Quercus robur (Q. robur). Over 5000 in situ chlorophyll absorbance measurements, alongside laboratory chlorophyll extractions, were collected on canopy-dominant Q. robur in the 3rd and 4th season of CO2 fumigation of a free-air CO2 enrichment (FACE) study in central England. Mass-based chlorophyll concentration (Chlmass, mg g−1) was significantly higher in the lower canopy compared to upper canopy foliage (P < 0.05). In contrast, significantly higher chlorophyll content (Chlarea, mg m−2) was observed in the upper canopy. ECO2 did not affect Chlmass but Chlarea significantly increased, attributable to increased leaf mass per unit area (Marea, g m−2). We found no effect of eCO2 on mass-based or area-based nitrogen (Nmass, mg g−1 or Narea g m−2); however, Narea significantly increased with canopy height, again attributable to Marea. The parallel relationships between Marea, Narea and Chlarea suggest the allocation of N to light harvesting is maintained with eCO2 exposure as well as in the upper canopy, and that increased photosynthetic mass may help regulate the eCO2 variation. An understanding of changes in the light-harvesting machinery with eCO2 will be useful to assess canopy processes and, at larger scales, changes in biogeochemical cycles in future climate scenarios

    Functional responses of plants to elevated atmospheric CO 2 – do photosynthetic and productivity data from FACE experiments support early predictions?

    Full text link
    Summary  1 I.   Introduction  2 II.   Early assessments of [CO 2 ] responses in natural ecosystems   2 III.   Global network of FACE sites   4 IV.   Assimilation and leaf N-content   5 V.   Primary productivity  13 VI.   Response of plant functional types  20 VII.  Conclusions   23 Acknowledgements  24 References   24 Summary Results from 16 free-air CO 2 enrichment (FACE) sites representing four different global vegetation types indicate that only some early predictions of the effects of increasing CO 2 concentration (elevated [CO 2 ]) on plant and ecosystem processes are well supported. Predictions for leaf CO 2 assimilation (A net ) generally fit our understanding of limitations to photosynthesis, and the FACE experiments indicate concurrent enhancement of photosynthesis and of partial downregulation. In addition, most herbaceous species had reduced leaf nitrogen (N)-content under elevated [CO 2 ] and thus only a modest enhancement of A net , whereas most woody species had little change in leaf N with elevated [CO 2 ] but a larger enhancement of A net . Early predictions for primary production are more mixed. Predictions that enhancement of productivity would be greater in drier ecosystems or in drier years has only limited support. Furthermore, differences in productivity enhancements among six plant functional types were not significant. By contrast, increases in productivity enhancements with increased N availability are well supported by the FACE results. Thus, neither a resource-based conceptual model nor a plant functional type conceptual model is exclusively supported by FACE results, but rather both species identity and resource availability are important factors influencing the response of ecosystems to elevated [CO 2 ]. © New Phytologist (2004) doi: 10.1111/j.1469-8137.2004.01033.xPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66140/1/j.1469-8137.2004.01033.x.pd

    Leaf Demography And Phenology In Amazonian Rain Forest: A Census Of 40 000 Leaves Of 23 Tree Species

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116912/1/ecm20047413.pd

    Water availability affects seasonal CO<sub>2</sub>-induced photosynthetic enhancement in herbaceous species in a periodically dry woodland

    Get PDF
    Elevated atmospheric CO2 (eCO2) is expected to reduce the impacts of drought and increase photosynthetic rates via two key mechanisms: first, through decreased stomatal conductance (gs) and increased soil water content (VSWC) and second, through increased leaf internal CO2 (Ci) and decreased stomatal limitations (Slim>). It is unclear if such findings from temperate grassland studies similarly pertain to warmer ecosystems with periodic water deficits. We tested these mechanisms in three important C3 herbaceous species in a periodically dry Eucalyptus woodland and investigated how eCO2-induced photosynthetic enhancement varied with seasonal water availability, over a 3 year period. Leaf photosynthesis increased by 10%–50% with a 150 ÎŒmol mol-1 increase in atmospheric CO2 across seasons. This eCO2-induced increase in photosynthesis was a function of seasonal water availability, given by recent precipitation and mean daily VSWC. The highest photosynthetic enhancement by eCO2 (>30%) was observed during the most water-limited period, for example, with VSWC 2 there was neither a significant decrease in gs in the three herbaceous species, nor increases in VSWC, indicating no “water-savings effect” of eCO2. Periods of low VSWC showed lower gs (less than ≈ 0.12 mol m-2 s-1), higher relative Slim (>30%) and decreased Ci under the ambient CO2 concentration (aCO2), with leaf photosynthesis strongly carboxylation-limited. The alleviation of Slim by eCO2 was facilitated by increasing Ci, thus yielding a larger photosynthetic enhancement during dry periods. We demonstrated that water availability, but not eCO2, controls gs and hence the magnitude of photosynthetic enhancement in the understory herbaceous plants. Thus, eCO2 has the potential to alter vegetation functioning in a periodically dry woodland understory through changes in stomatal limitation to photosynthesis, not by the “water-savings effect” usually invoked in grasslands

    Belowground competition and the response of developing forest communities to atmospheric CO 2 and O 3

    Full text link
    As human activity continues to increase CO 2 and O 3 , broad expanses of north temperate forests will be simultaneously exposed to elevated concentrations of these trace gases. Although both CO 2 and O 3 are potent modifiers of plant growth, we do not understand the extent to which they alter competition for limiting soil nutrients, like nitrogen (N). We quantified the acquisition of soil N in two 8-year-old communities composed of trembling aspen genotypes ( n = 5) and trembling aspen–paper birch which were exposed to factorial combinations of CO 2 (ambient and 560 ΜL L −1 ) and O 3 (ambient = 30–40 vs. 50–60 nL L −1 ). Tracer amount of 15 NH 4 + were applied to soil to determine how these trace gases altered the competitive ability of genotypes and species to acquire soil N. One year after isotope addition, we assessed N acquisition by measuring the amount of 15 N tracer contained in the plant canopy (i.e. recent N acquisition), as well as the total amount of canopy N (i.e. cumulative N acquisition). Exposure to elevated CO 2 differentially altered recent and cumulative N acquisition among aspen genotypes, changing the rank order in which they obtained soil N. Elevated O 3 also altered the rank order in which aspen genotypes obtained soil N by eliciting increases, decreases and no response among genotypes. If aspen genotypes respond similarly under field conditions, then rising concentrations of CO 2 and O 3 could alter the structure of aspen populations. In the aspen–birch community, elevated CO 2 increased recent N (i.e. 15 N) acquisition in birch (68%) to a greater extent than aspen (19%), suggesting that, over the course of this experiment, birch had gained a competitive advantage over aspen. The response of genotypes and species to rising CO 2 and O 3 concentrations, and how these responses are modified by competitive interactions, has the potential to change the future composition and productivity of northern temperate forests.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72323/1/j.1365-2486.2007.01436.x.pd

    The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland

    Get PDF
    Elevated carbon dioxide (eCO2) in the atmosphere increases forest biomass productivity but only where soil nutrients, particularly nitrogen (N) and phosphorus (P), are not limiting growth. eCO2, in turn, can impact rhizosphere nutrient availability. Our current understanding of nutrient cy cling under eCO2 is mainly derived from surface soil, leaving mechanisms of the impact of eCO2 on rhizosphere nutrient availability at deeper depths unexplored. To investigate the influence of eCO2 on nutrient availability in soil at depth, we studied various C, N, and P pools (extractable, microbial biomass, total soil C and N, and mineral-associated P) and nutrient cycling processes (enzyme activity and gross N mineralisation) associated with C, N, and P cycling in both bulk and rhizosphere soil at different depths at the Free Air CO2 enrichment facility in a native Australian mature Eucalyptus woodland (EucFACE) on a nutrient-poor soil. We found de creasing nutrient availability and gross N mineralisation with depth; however, this depth-associated decrease was reduced under eCO2, which we suggest is due to enhanced root influence. Increases in available PO3− 4 , adsorbed P, and the C : N and C : P ratio of enzyme activity with depth were observed. We conclude that the influences of roots and of eCO2 can affect available nutrient pools and processes well beyond the surface soil of a mature forest ecosystem. Our findings indicate a faster recycling of nutrients in the rhizosphere, rather than additional nutrients becoming available through soil organic matter (SOM) decomposition. If the plant growth response to eCO2 is reduced by the constraints of nutrient limitations, then the current results would call to question the potential for mature tree ecosystems to fix more C as biomass in response to eCO2. Future studies should address how accessible the available nutrients at depth are to deeply rooted plants and if fast recycling of nutrients is a meaningful contribution to biomass production and the accumulation of soil C in response to eCO2

    Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species

    Get PDF
    Tree mortality during global-change-type drought is usually attributed to xylem dysfunction, but as climate change increases the frequency of extreme heat events, it is necessary to better understand the interactive role of heat stress. We hypothesized that some drought-stressed plants paradoxically open stomata in heatwaves to prevent leaves from critically overheating. We experimentally imposed heat (&gt;40°C) and drought stress onto 20 broadleaf evergreen tree/shrub species in a glasshouse study. Most well-watered plants avoided lethal overheating, but drought exacerbated thermal damage during heatwaves. Thermal safety margins (TSM) quantifying the difference between leaf surface temperature and leaf critical temperature, where photosynthesis is disrupted, identified species vulnerability to heatwaves. Several mechanisms contributed to high heat tolerance and avoidance of damaging leaf temperatures—small leaf size, low leaf osmotic potential, high leaf mass per area (i.e., thick, dense leaves), high transpirational capacity, and access to water. Water-stressed plants had smaller TSM, greater crown dieback, and a fundamentally different stomatal heatwave response relative to well-watered plants. On average, well-watered plants closed stomata and decreased stomatal conductance (gs) during the heatwave, but droughted plants did not. Plant species with low gs, either due to isohydric stomatal behavior under water deficit or inherently low transpirational capacity, opened stomata and increased gs under high temperatures. The current paradigm maintains that stomata close before hydraulic thresholds are surpassed, but our results suggest that isohydric species may dramatically increase gs (over sixfold increases) even past their leaf turgor loss point. By actively increasing water loss at high temperatures, plants can be driven toward mortality thresholds more rapidly than has been previously recognized. The inclusion of TSM and responses to heat stress could improve our ability to predict the vulnerability of different tree species to future droughts

    Differentiation in stem and leaf traits among sympatric lianas, scandent shrubs and trees in a subalpine cold temperate forest

    Get PDF
    The scandent shrub plant form is a variant of liana that has upright and self-supporting stems when young but later becomes a climber. We aimed to explore the associations of stem and leaf traits among sympatric lianas, scandent shrubs and trees, and the effects of growth form and leaf habit on variation in stem or leaf traits. We measured 16 functional traits related to stem xylem anatomy, leaf morphology and nutrient stoichiometry in eight liana, eight scandent shrub and 21 tree species co-occurring in a subalpine cold temperate forest at an elevation of 2600–3200 m in Southwest China. Overall, lianas, scandent shrubs and trees were ordered along a fast-slow continuum of stem and leaf functional traits, with some traits overlapping. We found a consistent pattern of lianas > scandent shrubs > trees for hydraulically weighted vessel diameter, maximum vessel diameter and theoretical hydraulic conductivity. Vessel density and sapwood density showed a pattern of lianas = scandent shrubs < trees, and lianas < scandent shrubs = trees, respectively. Lianas had significantly higher specific leaf area and lower carbon concentration than co-occurring trees, with scandent shrubs showing intermediate values that overlapped with lianas and trees. The differentiation among lianas, scandent shrubs and trees was mainly explained by variation in stem traits. Additionally, deciduous lianas were positioned at the fast end of the trait spectrum, and evergreen trees at the slow end of the spectrum. Our results showed for the first time clear differentiation in stem and leaf traits among sympatric liana, scandent shrub and tree species in a subalpine cold temperate forest. This work will contribute to understanding the mechanisms responsible for variation in ecological strategies of different growth forms of woody plants
    • 

    corecore