169 research outputs found
Oxidative Stress during HIV Infection : Mechanisms and Consequences
Publisher Copyright: © 2016 Alexander V. Ivanov et al.It is generally acknowledged that reactive oxygen species (ROS) play crucial roles in a variety of natural processes in cells. If increased to levels which cannot be neutralized by the defense mechanisms, they damage biological molecules, alter their functions, and also act as signaling molecules thus generating a spectrum of pathologies. In this review, we summarize current data on oxidative stress markers associated with human immunodeficiency virus type-1 (HIV-1) infection, analyze mechanisms by which this virus triggers massive ROS production, and describe the status of various defense mechanisms of the infected host cell. In addition, we have scrutinized scarce data on the effect of ROS on HIV-1 replication. Finally, we present current state of knowledge on the redox alterations as crucial factors of HIV-1 pathogenicity, such as neurotoxicity and dementia, exhaustion of CD4+/CD8+ T-cells, predisposition to lung infections, and certain side effects of the antiretroviral therapy, and compare them to the pathologies associated with the nitrosative stress.publishersversionPeer reviewe
Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis
Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.publishersversionPeer reviewe
Optimal bispectrum constraints on single-field models of inflation
We use WMAP 9-year bispectrum data to constrain the free parameters of an 'effective field theory' describing fluctuations in single-field inflation. The Lagrangian of the theory contains a finite number of operators associated with unknown mass scales. Each operator produces a fixed bispectrum shape, which we decompose into partial waves in order to construct a likelihood function. Based on this likelihood we are able to constrain four linearly independent combinations of the mass scales. As an example of our framework we specialize our results to the case of 'Dirac-Born-Infeld' and 'ghost' inflation and obtain the posterior probability for each model, which in Bayesian schemes is a useful tool for model comparison. Our results suggest that DBI-like models with two or more free parameters are disfavoured by the data by comparison with single parameter models in the same class
Release of cell wall phenolic esters during hydrothermal pretreatment of rice husk and rice straw
Background: Rice husk and rice straw represent promising sources of biomass for production of renewable fuels and chemicals. For efficient utilisation, lignocellulosic components must first be pretreated to enable efficient enzymatic saccharification and subsequent fermentation. Existing pretreatments create breakdown products such as sugar-derived furans, and lignin-derived phenolics that inhibit enzymes and fermenting organisms. Alkali pretreatments have also been shown to release significant levels of simple, free phenolics such as ferulic acid that are normally esterified to cell wall polysaccharides in the intact plant. These phenolics have recently been found to have considerable inhibitory properties. The aim of this research has been to establish the extent to which such free phenolic acids are also released during hydrothermal pretreatment of rice straw (RS) and rice husk (RH). Results: RS and RH were subjected to hydrothermal pretreatments over a wide range of severities (1.57–5.45). FTIR analysis showed that the pretreatments hydrolysed and solubilised hemicellulosic moieties, leading to an enrichment of lignin and crystalline cellulose in the insoluble residue. The residues also lost the capacity for UV autofluorescence at pH 7 or pH 10, indicating the breakdown or release of cell wall phenolics. Saponification of raw RS and RH enabled identification and quantification of substantial levels of simple phenolics including ferulic acid (tFA), coumaric acid (pCA) and several diferulic acids (DiFAs) including 8-O-4′-DiFA, 8,5′-DiFA and 5,5′-DiFA. RH had higher levels of pCA and lower levels of tFA and DiFAs compared with RS. Assessment of the pretreatment liquors revealed that pretreatment-liberated phenolics present were not free but remained as phenolic esters (at mM concentrations) that could be readily freed by saponification. Many were lost, presumably through degradation, at the higher severities. Conclusion: Differences in lignin, tFA, DiFAs and pCA between RS and RH reflect differences in cell wall physiology, and probably contribute to the higher recalcitrance of RH compared with RS. Hydrothermal pretreatments, unlike alkali pretreatments, release cinnamic acid components as esters. The potential for pretreatment-liberated phenolic esters to be inhibitory to fermenting microorganisms is not known. However, the present study shows that they are found at concentrations that could be significantly inhibitory if released as free forms by enzyme activity
The δN formula is the dynamical renormalization group
We derive the 'separate universe' method for the inflationary bispectrum,
beginning directly from a field-theory calculation. We work to tree-level in
quantum effects but to all orders in the slow-roll expansion, with masses
accommodated perturbatively. Our method provides a systematic basis to account
for novel sources of time-dependence in inflationary correlation functions, and
has immediate applications. First, we use our result to obtain the correct
matching prescription between the 'quantum' and 'classical' parts of the
separate universe computation. Second, we elaborate on the application of this
method in situations where its validity is not clear. As a by-product of our
calculation we give the leading slow-roll corrections to the three-point
function of field fluctuations on spatially flat hypersurfaces in a canonical,
multiple-field model.Comment: v1: 33 pages, plus appendix and references; 5 figures. v2:
typographical typos fixed, minor changes to the main text and abstract,
reference added; matches version published in JCA
Nonequilibrium relaxation study of the anisotropic antiferromagnetic Heisenberg model on the triangular lattice
Effect of exchange anisotropy on the relaxation time of spin and vector
chirality is studied for the antiferromagnetic classical Heisenberg model on
the triangular lattice by using the nonequilibrium relaxation Monte Carlo
method. We identify the Berezinskii-Kosterlitz-Thouless (BKT) transition and
the chiral transition in a wide range of the anisotropy, even for very small
anisotropy of 0.01%. As the anisotropy decreases, both the critical
temperatures steeply decrease, while the BKT critical region becomes
divergently wide. We elucidate a sharp "V shape" of the phase diagram around
the isotropic Heisenberg point, which suggests that the isotropic case is
exceptionally singular and the associated Z vortex transition will be isolated
from the BKT and chiral transitions. We discuss the relevance of our results to
peculiar behavior of the spin relaxation time observed experimentally in
triangular antiferromagnets.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp
Hepatitis C Virus NS5A Protein Triggers Oxidative Stress by Inducing NADPH Oxidases 1 and 4 and Cytochrome P450 2E1
Replication of hepatitis C virus (HCV) is associated with the induction of oxidative stress, which is thought to play a major role in various liver pathologies associated with chronic hepatitis C. NS5A protein of the virus is one of the two key viral proteins that are known to trigger production of reactive oxygen species (ROS). To date it has been considered that NS5A induces oxidative stress by altering calcium homeostasis. Herein we show that NS5A-induced oxidative stress was only moderately inhibited by the intracellular calcium chelator BAPTA-AM and not at all inhibited by the drug that blocks the Ca2+ flux from ER to mitochondria. Furthermore, ROS production was not accompanied by induction of ER oxidoreductins (Ero1), H2O2-producing enzymes that are implicated in the regulation of calcium fluxes. Instead, we found that NS5A contributes to ROS production by activating expression of NADPH oxidases 1 and 4 as well as cytochrome P450 2E1. These effects were mediated by domain I of NS5A protein. NOX1 and NOX4 induction was mediated by enhanced production of transforming growth factor β1 (TGFβ1). Thus, our data show that NS5A protein induces oxidative stress by several multistep mechanisms
Evolution of fNL to the adiabatic limit
We study inflationary perturbations in multiple-field models, for which zeta
typically evolves until all isocurvature modes decay--the "adiabatic limit". We
use numerical methods to explore the sensitivity of the nonlinear parameter fNL
to the process by which this limit is achieved, finding an appreciable
dependence on model-specific data such as the time at which slow-roll breaks
down or the timescale of reheating. In models with a sum-separable potential
where the isocurvature modes decay before the end of the slow-roll phase we
give an analytic criterion for the asymptotic value of fNL to be large. Other
examples can be constructed using a waterfall field to terminate inflation
while fNL is transiently large, caused by descent from a ridge or convergence
into a valley. We show that these two types of evolution are distinguished by
the sign of the bispectrum, and give approximate expressions for the peak fNL.Comment: v1: 25 pages, plus Appendix and bibliography, 6 figures. v2: minor
edits to match published version in JCA
Prokaryotic expression, purification and immunogenicity in rabbits of the small antigen of hepatitis delta virus
Funding Information: Expression and purification of HDV antigen was supported by Russian Foundation for Basic Research (grant 16-04-01490a). Evaluation of serum by Western blot and confocal microscopy was supported by Russian Science Foundation (grant 14-14-01021). Experiments in rabbits were supported by the Swedish Institute grants 09272_2013 and 19806_2016. Cross-border collaboration of the partners, exchange of the materials and standard operation procedures used in the study, and dissemination of the data were supported by the EU Twinning project VACTRAIN, contract nr 692293. Publisher Copyright: © 2016 by the authors; licensee MDPI, Basel, Switzerland.Hepatitis delta virus (HDV) is a viroid-like blood-borne human pathogen that accompanies hepatitis B virus infection in 5% patients. HDV has been studied for four decades; however, the knowledge on its life-cycle and pathogenesis is still sparse. The studies are hampered by the absence of the commercially-available HDV-specific antibodies. Here, we describe a set of reproducible methods for the expression in E. coli of His-tagged small antigen of HDV (S-HDAg), its purification, and production of polyclonal anti-S-HDAg antibodies in rabbits. S-HDAg was cloned into a commercial vector guiding expression of the recombinant proteins with the C-terminal His-tag. We optimized S-HDAg protein purification procedure circumventing a low affinity of the His-tagged S-HDAg to the Ni-nitrilotriacetyl agarose (Ni-NTA-agarose) resin. Optimization allowed us to obtain S-HDAg with >90% purity. S-HDAg was used to immunize Shinchilla grey rabbits which received 80 µg of S-HDAg in two subcutaneous primes in the complete, followed by four 40 µg boosts in incomplete Freunds adjuvant. Rabbits were bled two weeks post each boost. Antibody titers determined by indirect ELISA exceeded 107. Anti-S-HDAg antibodies detected the antigen on Western blots in the amounts of up-to 100 pg. They were also successfully used to characterize the expression of S-HDAg in the eukaryotic cells by immunofluorescent staining/confocal microscopy.publishersversionPeer reviewe
- …