18,522 research outputs found

    Astrophysical Probes of the Constancy of the Velocity of Light

    Get PDF
    We discuss possible tests of the constancy of the velocity of light using distant astrophysical sources such as gamma-ray bursters (GRBs), Active Galactic Nuclei (AGNs) and pulsars. This speculative quest may be motivated by some models of quantum fluctuations in the space-time background, and we discuss explicitly how an energy-dependent variation in photon velocity \delta c/ c \sim - E / M arises in one particular quantum-gravitational model. We then discuss how data on GRBs may be used to set limits on variations in the velocity of light, which we illustrate using BATSE and OSSE observations of the GRBs that have recently been identified optically and for which precise redshifts are available. We show how a regression analysis can be performed to look for an energy-dependent effect that should correlate with redshift. The present data yield a limit M \gsim 10^{15} GeV for the quantum gravity scale. We discuss the prospects for improving this analysis using future data, and how one might hope to distinguish any positive signal from astrophysical effects associated with the sources.Comment: 37 pages LaTeX, 9 eps figures included, uses aasms4.st

    Terahertz dynamics of a topologically protected state: quantum Hall effect plateaus near cyclotron resonance in a GaAs/AlGaAs heterojunction

    Full text link
    We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency by employing a highly sensitive Faraday rotation method coupled with electrical gating of the sample to change the electron density. We observe clear plateau-and step-like features in the Faraday rotation angle vs. electron density and magnetic field (Landau-level filling factor), which are the high frequency manifestation of quantum Hall plateaus - a signature of topologically protected edge states. The results are compared to a recent dynamical scaling theory.Comment: 18 pages, 3 figure

    M Theory from World-Sheet Defects in Liouville String

    Get PDF
    We have argued previously that black holes may be represented in a D-brane approach by monopole and vortex defects in a sine-Gordon field theory model of Liouville dynamics on the world sheet. Supersymmetrizing this sine-Gordon system, we find critical behaviour in 11 dimensions, due to defect condensation that is the world-sheet analogue of D-brane condensation around an extra space-time dimension in M theory. This supersymmetric description of Liouville dynamics has a natural embedding within a 12-dimensional framework suggestive of F theory.Comment: 17 pages LATEX, 1 epsf figure include

    Configurational factors in the perception of unfamiliar faces

    Get PDF
    Young et al (1987) have demonstrated that the juxtaposition of top and bottom halves of different faces produces a powerful impression of a novel face. It is difficult to isolate perceptually either half of the 'new' face. Inversion of the stimulus, however, makes this task easier. Upright chimeric faces appear to evoke strong and automatic configurational processing mechanisms which interfere with selective piecemeal processing. In this paper three experiments are described in which a matching paradigm was used to show that Young et al's findings apply to unfamiliar as well as to familiar faces. The results highlight the way in which minor procedural differences may alter the way in which subjects perform face-recognition tasks

    On possible lower bounds for the direct detection rate of SUSY Dark Matter

    Get PDF
    One can expect accessible lower bounds for dark matter detection rate due to restrictions on masses of the SUSY-partners. To explore this correlation one needs a new-generation large-mass detector. The absolute lower bound for detection rate can naturally be due to spin-dependent interaction. Aimed at detecting dark matter with sensitivity higher than 10510^{-5} event/day/kg an experiment should have a non-zero-spin target. Perhaps, the best is to create a GENIUS-like detector with both Ge-73 (high spin) and Ge-76 nuclei.Comment: latex, 5 pages, 3 figures. Talk given at the III International Conference on Non-accelerator New Physics (NANP'01), Dubna, 19--23 June, 200

    Search for Cold Dark Matter and Solar Neutrinos with GENIUS and GENIUS-TF

    Full text link
    The new project GENIUS will cover a wide range of the parameter space of predictions of SUSY for neutralinos as cold dark matter. Further it has the potential to be a real-time detector for low-energy (pp and 7Be) solar neutrinos. A GENIUS Test Facility has just been funded and will come into operation by end of 2002.Comment: 4 pages, revtex, 3 figures, Talk was presented at International School on Nuclear Physics, 23rd Course: Neutrinos in Astro, Particle and Nuclear Physics, Erice, September 18 - 26, 2001, Publ. in Progress in Particle and Nuclear Physics, Vol. 48 (2002) 283 - 286, Home Page of Heidelberg Non-Accelerator Particle Physics Group: http://www.mpi-hd.mpg.de/non_acc

    Dijet Production at Large Rapidity Intervals

    Full text link
    We examine dijet production at large rapidity intervals at Tevatron energies, by using the theory of Lipatov and collaborators which resums the leading powers of the rapidity interval. We analyze the growth of the Mueller-Navelet KK-factor in this context and find it to be negligible. However, we do find a considerable enhancement of jet production at large transverse momenta. In addition, we show that the correlation in transverse momentum and azimuthal angle of the tagging jets fades away as the rapidity interval is increased.Comment: 12 pages, preprint DESY 93-139, SCIPP 93/3

    What if Supersymmetry Breaking Unifies beyond the GUT Scale?

    Full text link
    We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, MinM_{in}, above the GUT scale, \mgut. We assume that the scalar masses and gaugino masses have common values, m0m_0 and m1/2m_{1/2} respectively, at MinM_{in}. We use the renormalization-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to \mgut, studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as MinM_{in} increases. This has the consequence, as we show in (m1/2,m0)(m_{1/2}, m_0) planes for several different values of tanβ\tan \beta, that the stau coannihilation region shrinks as MinM_{in} increases, and we delineate the regions of the (Min,tanβ)(M_{in}, \tan \beta) plane where it is absent altogether. Moreover, as MinM_{in} increases, the focus-point region recedes to larger values of m0m_0 for any fixed tanβ\tan \beta and m1/2m_{1/2}. We conclude that the regions of the (m1/2,m0)(m_{1/2}, m_0) plane that are commonly favoured in phenomenological analyses tend to disappear at large MinM_{in}.Comment: 24 pages with 11 eps figures; references added, some figures corrected, discussion extended and figure added; version to appear in EPJ

    Numerical evaluation of one-loop QCD amplitudes

    Full text link
    We present the publicly available program NGluon allowing the numerical evaluation of primitive amplitudes at one-loop order in massless QCD. The program allows the computation of one-loop amplitudes for an arbitrary number of gluons. The focus of the present article is the extension to one-loop amplitudes including an arbitrary number of massless quark pairs. We discuss in detail the algorithmic differences to the pure gluonic case and present cross checks to validate our implementation. The numerical accuracy is investigated in detail.Comment: Talk given at ACAT 2011 conference in London, 5-9 Septembe
    corecore