21,792 research outputs found

    Asymmetric binary covering codes

    Get PDF
    An asymmetric binary covering code of length n and radius R is a subset C of the n-cube Q_n such that every vector x in Q_n can be obtained from some vector c in C by changing at most R 1's of c to 0's, where R is as small as possible. K^+(n,R) is defined as the smallest size of such a code. We show K^+(n,R) is of order 2^n/n^R for constant R, using an asymmetric sphere-covering bound and probabilistic methods. We show K^+(n,n-R')=R'+1 for constant coradius R' iff n>=R'(R'+1)/2. These two results are extended to near-constant R and R', respectively. Various bounds on K^+ are given in terms of the total number of 0's or 1's in a minimal code. The dimension of a minimal asymmetric linear binary code ([n,R]^+ code) is determined to be min(0,n-R). We conclude by discussing open problems and techniques to compute explicit values for K^+, giving a table of best known bounds.Comment: 16 page

    Quantum Decoherence in a D-Foam Background

    Get PDF
    Within the general framework of Liouville string theory, we construct a model for quantum D-brane fluctuations in the space-time background through which light closed-string states propagate. The model is based on monopole and vortex defects on the world sheet, which have been discussed previously in a treatment of 1+1-dimensional black-hole fluctuations in the space-time background, and makes use of a T-duality transformation to relate formulations with Neumann and Dirichlet boundary conditions. In accordance with previous general arguments, we derive an open quantum-mechanical description of this D-brane foam which embodies momentum and energy conservation and small mean energy fluctuations. Quantum decoherence effects appear at a rate consistent with previous estimates.Comment: 16 pages, Latex, two eps figures include

    M Theory from World-Sheet Defects in Liouville String

    Get PDF
    We have argued previously that black holes may be represented in a D-brane approach by monopole and vortex defects in a sine-Gordon field theory model of Liouville dynamics on the world sheet. Supersymmetrizing this sine-Gordon system, we find critical behaviour in 11 dimensions, due to defect condensation that is the world-sheet analogue of D-brane condensation around an extra space-time dimension in M theory. This supersymmetric description of Liouville dynamics has a natural embedding within a 12-dimensional framework suggestive of F theory.Comment: 17 pages LATEX, 1 epsf figure include

    Book Review 2

    Get PDF

    Effects of Higher-Order Threshold Corrections in High-E_T Jet Production

    Get PDF
    Results for higher-order threshold enhancements in high-E_T jet production in hadron-hadron collisions are presented. Expressions are given for the next-to-next-to-leading order (NNLO) threshold corrections to the single-jet inclusive cross section at next-to-leading logarithmic (NLL) accuracy. The corrections are found to be small for the specific choice of E_T/2 for the factorization and renormalization scales, and the corrected cross section shows a substantial reduction of the scale dependence. A comparison to experimental results from the Tevatron is presented.Comment: 24 pages LaTeX, 5 figure

    Time-Dependent Vacuum Energy Induced by D-Particle Recoil

    Get PDF
    We consider cosmology in the framework of a `material reference system' of D particles, including the effects of quantum recoil induced by closed-string probe particles. We find a time-dependent contribution to the cosmological vacuum energy, which relaxes to zero as 1/t2\sim 1/ t^2 for large times tt. If this energy density is dominant, the Universe expands with a scale factor R(t)t2R(t) \sim t^2. We show that this possibility is compatible with recent observational constraints from high-redshift supernovae, and may also respect other phenomenological bounds on time variation in the vacuum energy imposed by early cosmology.Comment: 14 pages LATEX, no figure

    Statistics of Entropy Production in Linearized Stochastic System

    Full text link
    We consider a wide class of linear stochastic problems driven off the equilibrium by a multiplicative asymmetric force. The force brakes detailed balance, maintained otherwise, thus producing entropy. The large deviation function of the entropy production in the system is calculated explicitly. The general result is illustrated using an example of a polymer immersed in a gradient flow and subject to thermal fluctuations.Comment: 4 pages, 1 figur

    Brany Liouville Inflation

    Get PDF
    We present a specific model for cosmological inflation driven by the Liouville field in a non-critical supersymmetric string framework, in which the departure from criticality is due to open strings stretched between the two moving Type-II 5-branes. We use WMAP and other data on fluctuations in the cosmic microwave background to fix parameters of the model, such as the relative separation and velocity of the 5-branes, respecting also the constraints imposed by data on light propagation from distant gamma-ray bursters. The model also suggests a small, relaxing component in the present vacuum energy that may accommodate the breaking of supersymmetry.Comment: 23 pages LATEX, two eps figures incorporated; version accepted for publication in NJ

    Passive Evolution: Are the Faint Blue Galaxy Counts Produced by a Population of Eternally Young Galaxies?

    Get PDF
    A constant age population of blue galaxies, postulated in the model of Gronwall & Koo (1995), seems to provide an attractive explanation of the excess of very blue galaxies in the deep galaxy counts. Such a population may be generated by a set of galaxies with cycling star formation rates, or at the other extreme, be maintained by the continual formation of new galaxies which fade after they reach the age specified in the Gronwall and Koo model. For both of these hypotheses, we have calculated the luminosity functions including the respective selection criteria, the redshift distributions, and the number counts in the B_J and K bands. We find a substantial excess in the number of galaxies at low redshift (0 < z < 0.05) over that observed in the CFH redshift survey (Lilly et al. 1995) and at the faint end of the Las Campanas luminosity function (Lin et al. 1996). Passive or mild evolution fails to account for the deep galaxy counts because of the implications for low redshift determinations of the I-selected redshift distribution and the r-selected luminosity function in samples where the faded counterparts of the star-forming galaxies would be detectable.Comment: 11 pages, LaTeX type (aaspp4.sty), 3 Postscript figures, submitted to ApJ Letter
    corecore