4,979 research outputs found

    Mode locking of semiconductor laser with curved waveguide and passive mode expander

    Get PDF
    Active mode locking is reported for a 1.55 ÎŒm semiconductor laser with a curved waveguide and passive mode expander, placed in a wavelength tunable external cavity. One facet with a very low reflectivity of 8×10−6 is achieved through a curved active region that tapers into an underlying passive waveguide, thus expanding the mode to give reduced divergence. 10 GHz pulses of 3.1 ps duration have been generated, with a linewidth of 0.81 nm

    The Q2Q^2 dependence of the measured asymmetry A1A_1: the test of the Bjorken sum rule

    Full text link
    We analyse the proton and deutron data on spin dependent asymmetry A1(x,Q2)A_1(x,Q^2) supposing the DIS structure functions g1(x,Q2)g_1(x,Q^2) and F3(x,Q2)F_3(x,Q^2) have the similar Q2Q^2-dependence. As a result, we have obtained that Γ1p−Γ1n=0.190±0.038\Gamma_1^p - \Gamma_1^n = 0.190 \pm 0.038 at Q2=10GeV2Q^2= 10 GeV^2 and Γ1p−Γ1n=0.165±0.026\Gamma_1^p - \Gamma_1^n = 0.165 \pm 0.026 at Q2=3GeV2Q^2= 3 GeV^2, what is in the best agreement with the Bjorken sum rule predictions.Comment: LaTeX, 5 pages, no figures, to be published in JETP Letter

    Today's View on Strangeness

    Full text link
    There are several different experimental indications, such as the pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest that the nucleon wave function contains a hidden s bar s component. This is expected in chiral soliton models, which also predicted the existence of new exotic baryons that may recently have been observed. Another hint of hidden strangeness in the nucleon is provided by copious phi production in various N bar N annihilation channels, which may be due to evasions of the Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic scattering.Comment: 8 pages LaTeX, 10 figures, to appear in the Proceedings of the International Conference on Parity Violation and Hadronic Structure, Grenoble, June 200

    False Vacuum Inflation with a Quartic Potential

    Get PDF
    We consider a variant of Hybrid Inflation, where inflation is driven by two interacting scalar fields, one of which has a `Mexican hat' potential and the other a quartic potential. Given the appropriate initial conditions one of the fields can be trapped in a false vacuum state, supported by couplings to the other field. The energy of this vacuum can be used to drive inflation, which ends when the vacuum decays to one of its true minima. Depending on parameters, it is possible for inflation to proceed via two separate epochs, with the potential temporarily steepening sufficiently to suspend inflation. We use numerical simulations to analyse the possibilities, and emphasise the shortcomings of the slow-roll approximation for analysing this scenario. We also calculate the density perturbations produced, which can have a spectral index greater than one.Comment: 10 pages, RevTeX 3.0, no figure

    QCD Sum Rule Calculation of Twist-4 Corrections to Bjorken and Ellis-Jaffe Sum Rules

    Get PDF
    We calculate the twist-4 corrections to the integral of g1(x,Q2)g_1(x,Q^2) in the framework of QCD sum rules using an interpolating nucleon field which contains explicitly a gluonic degree of freedom. This information can be used together with previous calculations of the twist-3 contribution to the second moment of g2(x)g_2(x) to estimate the higher-twist corrections to the Ellis-Jaffe and Bjorken sum rules. We get f(2)(proton)=−0.037±0.006f^{(2)}(proton) = -0.037 \pm 0.006 and f(2)(neutron)=−0.013±0.006f^{(2)}(neutron) = -0.013 \pm 0.006. Numerically our results roughly agree with those obtained by Balitsky, Braun and Kolesnichenko based on a sum rule for a simpler current. Our calculations are far more stable as tested within the sum rule approach but are more sensitive to less well known condensates.Comment: 18pp., 1 figure (uuencoded eps-file), Late

    Hyperon semileptonic decays and quark spin content of the proton

    Get PDF
    We investigate the hyperon semileptonic decays and the quark spin content of the proton ΔΣ\Delta \Sigma taking into account flavor SU(3) symmetry breaking. Symmetry breaking is implemented with the help of the chiral quark-soliton model in an approach, in which the dynamical parameters are fixed by the experimental data for six hyperon semileptonic decay constants. As a result we predict the unmeasured decay constants, particularly for Ξ0→Σ+\Xi^0 \to \Sigma^+, which will be soon measured and examine the effect of the SU(3) symmetry breaking on the spin content ΔΣ\Delta \Sigma of the proton. Unfortunately large experimental errors of Ξ−\Xi^- decays propagate in our analysis making ΔΣ\Delta \Sigma and Δs\Delta s practically undetermined. We conclude that statements concerning the values of these two quantities, which are based on the exact SU(3) symmetry, are premature. We stress that the meaningful results can be obtained only if the experimental errors for the Ξ\Xi decays are reduced.Comment: The final version accepted for publication in Phys. Rev. D. 18 pages, RevTex is used with 4 figures include

    A Short Review on Jet Identification

    Get PDF
    Jets can be used to probe the physical properties of the high energy density matter created in collisions at the Relativistic Heavy Ion Collider (RHIC). Measurements of strong suppression of inclusive hadron distributions and di-hadron correlations at high pTp_{T} have already provided evidence for partonic energy loss. However, these measurements suffer from well-known geometric biases due to the competition of energy loss and fragmentation. These biases can be avoided if the jets are reconstructed independently of their fragmentation details - quenched or unquenched. In this paper, we discuss modern jet reconstruction algorithms (cone and sequential recombination) and their corresponding background subtraction techniques required by the high multiplicities of heavy ion collisions. We review recent results from the STAR experiment at RHIC on direct jet reconstruction in central Au+Au collisions at sNN=200\sqrt {s_{NN}}= 200 GeV.Comment: Proceedings for the invited talk of Hot Quarks 2008, Estes Park, CO 18-23 August 200

    Cosmology with a TeV mass GUT Higgs

    Full text link
    The most natural way to break the GUT gauge symmetry is with a Higgs field whose vacuum expectation value is of order 10^{16}\,\mbox{GeV} but whose mass is of order 10210^2 to 10^3\,\mbox{GeV}. This can lead to a cosmological history radically different from what is usually assumed to have occurred between the standard inflationary and nucleosynthesis epochs, which may solve the gravitino and Polonyi/moduli problems in a natural way.Comment: 4 pages, revte

    Flavor Singlet Axial Vector Coupling of the Proton with Dynamical Wilson Fermions

    Full text link
    We present the results of a full QCD lattice calculation of the flavor singlet axial vector coupling GA1G_A^1 of the proton. The simulation has been carried out on a 163×3216^3\times 32 lattice at ÎČ=5.6\beta=5.6 with nf=2n_f=2 dynamical Wilson fermions. It turns out that the statistical quality of the connected contribution to GA1G_A^1 is excellent, whereas the disconnected part is accessible but suffers from large statistical fluctuations. Using a 1st order tadpole improved renormalization constant ZAZ_A, we estimate GA1=0.20(12)G_A^1 = 0.20(12).Comment: 13 pages, 5 eps figures, minor changes to text and citation

    Magnetic moments of the 3/2 resonances and their quark spin structure

    Full text link
    We discuss magnetic moments of the J=3/2J=3/2 baryons based on an earlier model for the baryon magnetic moments, allowing for flavor symmetry breaking in the quark magnetic moments as well as a general quark spin structure. From our earlier analysis of the nucleon-hyperon magnetic moments and the measured values of the magnetic moments of Δ++\Delta^{++} and Ω−\Omega^{-} we predict the other magnetic moments and deduce the spin structure of the resonance particles. We find from experiment that the total spin polarization of the decuplet baryons, ΔΣ(3/2)\Delta\Sigma(3/2), is considerably smaller than the non-relativistic quark model value of 3, although the data is still not good enough to give a precise determination.Comment: 13 pages, REVTeX, 2 figures, minor clarifying change
    • 

    corecore