17,805 research outputs found

    Observation of Asymmetric Transport in Structures with Active Nonlinearities

    Get PDF
    A mechanism for asymmetric transport based on the interplay between the fundamental symmetries of parity (P) and time (T) with nonlinearity is presented. We experimentally demonstrate and theoretically analyze the phenomenon using a pair of coupled van der Pol oscillators, as a reference system, one with anharmonic gain and the other with complementary anharmonic loss; connected to two transmission lines. An increase of the gain/loss strength or the number of PT-symmetric nonlinear dimers in a chain, can increase both the asymmetry and transmittance intensities.Comment: 5 pages, 5 figure

    Jet Investigations Using the Radial Moment

    Get PDF
    We define the radial moment, , for jets produced in hadron-hadron collisions. It can be used as a tool for studying, as a function of the jet transverse energy and pseudorapidity, radiation within the jet and the quality of a perturbative description of the jet shape. We also discuss how non-perturbative corrections to the jet transverse energy affect .Comment: 14 pages, LaTeX, 6 figure

    THREaD Mapper Studio: a novel, visual web server for the estimation of genetic linkage maps

    Get PDF
    The estimation of genetic linkage maps is a key component in plant and animal research, providing both an indication of the genetic structure of an organism and a mechanism for identifying candidate genes associated with traits of interest. Because of this importance, several computational solutions to genetic map estimation exist, mostly implemented as stand-alone software packages. However, the estimation process is often largely hidden from the user. Consequently, problems such as a program crashing may occur that leave a user baffled. THREaD Mapper Studio (http://cbr.jic.ac.uk/threadmapper) is a new web site that implements a novel, visual and interactive method for the estimation of genetic linkage maps from DNA markers. The rationale behind the web site is to make the estimation process as transparent and robust as possible, while also allowing users to use their expert knowledge during analysis. Indeed, the 3D visual nature of the tool allows users to spot features in a data set, such as outlying markers and potential structural rearrangements that could cause problems with the estimation procedure and to account for them in their analysis. Furthermore, THREaD Mapper Studio facilitates the visual comparison of genetic map solutions from third party software, aiding users in developing robust solutions for their data sets

    A configuration system for the ATLAS trigger

    Full text link
    The ATLAS detector at CERN's Large Hadron Collider will be exposed to proton-proton collisions from beams crossing at 40 MHz that have to be reduced to the few 100 Hz allowed by the storage systems. A three-level trigger system has been designed to achieve this goal. We describe the configuration system under construction for the ATLAS trigger chain. It provides the trigger system with all the parameters required for decision taking and to record its history. The same system configures the event reconstruction, Monte Carlo simulation and data analysis, and provides tools for accessing and manipulating the configuration data in all contexts.Comment: 4 pages, 2 figures, contribution to the Conference on Computing in High Energy and Nuclear Physics (CHEP06), 13.-17. Feb 2006, Mumbai, Indi

    Cosmic Strings and the String Dilaton

    Full text link
    The existence of a dilaton (or moduli) with gravitational-strength coupling to matter imposes stringent constraints on the allowed energy scale of cosmic strings, η\eta. In particular, superheavy gauge strings with η∼1016GeV\eta \sim 10^{16} GeV are ruled out unless the dilaton mass m_{\phi} \gsim 100 TeV, while the currently popular value mϕ∼1TeVm_{\phi} \sim 1 TeV imposes the bound \eta \lsim 3 \times 10^{11} GeV. Similar constraints are obtained for global topological defects. Some non-standard cosmological scenarios which can avoid these constraints are pointed out.Comment: 16 page

    Local and non-local measures of acceleration in cosmology

    Get PDF
    Current cosmological observations, when interpreted within the framework of a homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) model, strongly suggest that the Universe is entering a period of accelerating expansion. This is often taken to mean that the expansion of space itself is accelerating. In a general spacetime, however, this is not necessarily true. We attempt to clarify this point by considering a handful of local and non-local measures of acceleration in a variety of inhomogeneous cosmological models. Each of the chosen measures corresponds to a theoretical or observational procedure that has previously been used to study acceleration in cosmology, and all measures reduce to the same quantity in the limit of exact spatial homogeneity and isotropy. In statistically homogeneous and isotropic spacetimes, we find that the acceleration inferred from observations of the distance-redshift relation is closely related to the acceleration of the spatially averaged universe, but does not necessarily bear any resemblance to the average of the local acceleration of spacetime itself. For inhomogeneous spacetimes that do not display statistical homogeneity and isotropy, however, we find little correlation between acceleration inferred from observations and the acceleration of the averaged spacetime. This shows that observations made in an inhomogeneous universe can imply acceleration without the existence of dark energy.Comment: 19 pages, 10 figures. Several references added or amended, some minor clarifications made in the tex

    Cosmology Without Averaging

    Get PDF
    We construct cosmological models consisting of large numbers of identical, regularly spaced masses. These models do not rely on any averaging procedures, or on the existence of a global Friedmann-Robertson-Walker (FRW) background. They are solutions of Einstein's equations up to higher order corrections in a perturbative expansion, and have large-scale dynamics that are well modelled by the Friedmann equation. We find that the existence of arbitrarily large density contrasts does not change either the magnitude or scale of the background expansion, at least when masses are regularly arranged, and up to the prescribed level of accuracy. We also find that while the local space-time geometry inside each cell can be described as linearly perturbed FRW, one could argue that a more natural description is that of perturbed Minkowski space (in which case the scalar perturbations are simply Newtonian potentials). We expect these models to be of use for understanding and testing ideas about averaging in cosmology, as well as clarifying the relationship between global cosmological dynamics and the static space-times associated with isolated masses.Comment: 24 pages, 3 figures. Corrected and expande

    WMAP Data and Recent Developments in Supersymmetric Dark Matter

    Full text link
    A brief review is given of the recent developments in the analyses of supersymmetric dark matter. Chief among these is the very accurate determination of the amount of cold dark matter in the universe from analyses using WMAP data. The implications of this data for the mSUGRA parameter space are analyzed. It is shown that the data admits solutions on the hyperbolic branch (HB) of the radiative breaking of the electroweak symmetry. A part of the hyperbolic branch lies in the so called inversion region where the LSP neutralino χ10\chi_1^0 becomes essentially a pure Higgsino and degenerate with the next to the lightest neutralino χ20\chi_2^0 and the light chargino χ1±\chi_1^{\pm}. Thus some of the conventional signals for the observation of supersymmetry at colliders (e.g., the missing energy signals) do not operate in this region. On the other hand the inversion region contains a high degree of degeneracy of χ10\chi_1^0, χ20\chi_2^0, χ1±\chi_1^{\pm} leading to coannihilations which allow for the satisfaction of the WMAP relic density constraints deep on the hyperbolic branch. Further, an analysis of the neutralino-proton cross sections in this region reveals that this region can still be accessible to dark matter experiments in the future. Constraints from gμ−2g_{\mu}-2 and from Bs0→μ+μ−B^0_s\to \mu^+\mu^- are discussed. Future prospects are also discussed.Comment: 15 pages Latex. Invited talk at the IV International Conference on Non-accelerator New Physics (NANP'03), Dubna, Russia, June 23-28, 200

    Comment On ``Grand Unification and Supersymmetric Threshold"

    Full text link
    Barbieri and Hall have argued that threshold effects at the scale of grand-unification wipe out predictions on the SUSY scale, M_S. Using triviality arguments we give upper bounds on ultraheavy particles, while proton stability gives lower bounds on the mass of the higgs color-triplet. We find no useful lower bound on the Σ\Sigma supermultiplet, but if the strong coupling constant is as large as recent experiments suggest, unification in the minimal SUSY SU(5) model requires that the SigmaSigma masses be ∼10−7MV\sim 10^{-7}M_V and that the color octet and weak triplet be split in mass by a factor of ∼\sim100.Comment: 6 pages (revised
    • …
    corecore