2,595 research outputs found

    Top-Down Attentional Processes Modulate the Coding of Atypical Biological Motion Kinematics in the Absence of Motor Signals

    Get PDF
    The acquisition of sensorimotor parameters that control goal-directed motor behaviors occurs by observing another person in the absence of efferent and afferent motor signals. This is observational practice. During such observation, biological motion properties associated with the observed person are coded into a representation that controls motor learning. Understanding the underlying processes, specifically associated with coding biological motion, has theoretical and practical significance. Here, we examined the following questions. Experiment 1: Are the underlying velocity characteristics associated with observed biological motion kinematics imitated? Experiment 2: Is attention involved in imitating biological motion kinematics? Experiment 3: Can selective attention modulate how biological motion kinematics are imitated/represented? To this end, participants practiced by observing a model performing a movement sequence that contained typical or atypical biological motion kinematics. The differences in kinematics were designed to dissociate the movement constraints of the task and the anatomical constraints of the observer. This way, we examined whether novel motor behaviors are acquired by adopting prototypical movements or coding biological motion. The kinematic analyses indicated the timing and spatial position of peak velocity were represented. Using a dual-task protocol, we attenuated the coding of biological motion kinematics (Experiment 2) and augmented coding using a selective attention protocol (Experiment 3). Findings indicated that velocity characteristics of biological motion kinematics are coded during observational practice, most likely through bottom-up sensorimotor processes. By modulating motion coding using 2 attentional protocols, we showed that bottom-up processes are influenced by input modulation, which is consistent with top-down control during observational practice

    Top-down and bottom-up processes during observation: Implications for motor learning

    Get PDF
    Neurophysiological and behavioural research has linked observational practice to a 2 mirroring mechanism encompassing the action-observation network (AON). Although the 3 original findings indicate that biological stimuli alone activate the AON, recent evidence 4 has shown sensitivity to non-biological stimuli. Thus, the AON is suggested to be 5 influenced by interacting bottom-up and top-down processes. In this review, we describe 6 the multi-functional properties of the AON, and discuss the implications for observational 7 practice and subsequent motor learning

    The Impact of Strategic Trajectory Optimization on Illusory Target Biases During Goal-Directed Aiming

    Get PDF
    During rapid aiming, movements are planned and executed to avoid worst-case outcomes that require time and energy to correct. As such, downward movements initially undershoot the target to avoid corrections against gravity. Illusory target context can also impact aiming bias. Here, the authors sought to determine how strategic biases mediate illusory biases. Participants aimed to MĂĽller-Lyer figures in different directions (forward, backward, up, down). Downward biases emerged late in the movement and illusory biases emerged from peak velocity. The illusory effects were greater for downward movements at terminal endpoint. These results indicate that strategic biases interact with the limb-target control processes associated with illusory biases. Thus, multiple control processes during rapid aiming may combine and later affect endpoint accuracy (D. Elliott et al., 2010)

    Gunslinger Effect and Muller-Lyer Illusion: Examining Early Visual Information Processing for Late Limb-Target Control

    Get PDF
    The multiple process model contends that there are two forms of online control for manual aiming: impulse regulation and limb-target control. This study examined the impact of visual information processing for limb-target control. We amalgamated the Gunslinger protocol (i.e., faster movements following a reaction to an external trigger compared with the spontaneous initiation of movement) and MĂĽller-Lyer target configurations into the same aiming protocol. The results showed the Gunslinger effect was isolated at the early portions of the movement (peak acceleration and peak velocity). Reacted aims reached a longer displacement at peak deceleration, but no differences for movement termination. The target configurations manifested terminal biases consistent with the illusion. We suggest the visual information processing demands imposed by reacted aims can be adapted by integrating early feedforward information for limb-target control

    POD for optimal control of the Cahn-Hilliard system using spatially adapted snapshots

    Full text link
    The present work considers the optimal control of a convective Cahn-Hilliard system, where the control enters through the velocity in the transport term. We prove the existence of a solution to the considered optimal control problem. For an efficient numerical solution, the expensive high-dimensional PDE systems are replaced by reduced-order models utilizing proper orthogonal decomposition (POD-ROM). The POD modes are computed from snapshots which are solutions of the governing equations which are discretized utilizing adaptive finite elements. The numerical tests show that the use of POD-ROM combined with spatially adapted snapshots leads to large speedup factors compared with a high-fidelity finite element optimization

    The influence of environmental context in interpersonal observation-execution.

    Get PDF
    Cyclical upper-limb movements involuntarily deviate from a primary movement direction when the actor concurrently observes incongruent biological motion. We examined whether environmental context influences such motor interference during interpersonal observation-execution. Participants executed continuous horizontal arm movements while observing congruent horizontal or incongruent curvilinear biological movements with or without the presence of an object positioned as an obstacle or distractor. When observing a curvilinear movement, an object located within the movement space became an obstacle, and thus, the curvilinear trajectory was essential to reach into horizontal space. When acting as a distractor, or with no object, the curvilinear trajectory was no longer essential. For observing horizontal movements, objects were located at the same relative locations as in the curvilinear movement condition. We found greater involuntary movement deviation when observing curvilinear compared to the horizontal movements. Also, there was an influence of context only when observing horizontal movements, with greater deviation exhibited in the presence of a large obstacle. These findings suggest the influence of environmental context is underpinned by the (mis-)matching of observed and executed actions as incongruent biological motion is primarily coded via bottom-up sensorimotor processes, whilst the congruent condition incorporates surrounding environmental features to modulate the bottom-up sensorimotor processes

    The violation of Fitts' Law: an examination of displacement biases and corrective submovements

    Get PDF
    Fitts’ Law holds that, to maintain accuracy, movement times of aiming movements must change as a result of varying degrees of movement difficulty. Recent evidence has emerged that aiming to a target located last in an array of placeholders results in a shorter movement time than would be expected by the Fitts’ equation—a violation of Fitts’ Law. It has been suggested that the violation emerges because the performer adopts an optimized movement strategy in which they partially pre-plan an action to the closest placeholder (undershoot the last placeholder) and rely on a secondary acceleration to propel the limb toward the last location when it is selected as the target (Glazebrook et al. in Hum Mov Sci 39:163–176, 2015). In the current study, we examine this proposal and further elucidate the processes underlying the violation by examining limb displacement and corrective submovements that occur when performers aim to different target locations. For our Main Study, participants executed discrete aiming movements in a five-placeholder array. We also reanalyzed data from a previously reported study in which participants aimed in placeholder and no-placeholder conditions (Blinch et al. in Exp Brain Res 223:505–515, 2012). The results showed the violation of Fitts’ Law unfolded following peak velocity (online control). Further, the analysis showed that movements to the last target tended to overshoot and had a higher proportion of secondary submovements featuring a reversal than other categories of submovement (secondary accelerations, discontinuities). These findings indicate that the violation of Fitts’ Law may, in fact, result from a strategic bias toward planning farther initial displacements of the limb which accommodates a shorter time in online control

    The modulation of motor contagion by intrapersonal sensorimotor experience

    Get PDF
    Sensorimotor experiences can modify the internal models for action. These modifications can govern the discrepancies between predicted and actual sensory consequences, such as distinguishing self- and other-generated actions. This distinction may also contribute toward the inhibition of movement interference, which is strongly associated with the coupling of observed and executed actions. Therefore, movement interference could be mediated by the sensorimotor experiences underlying the self-other distinction. The present study examined the impact of sensorimotor experiences on involuntary movement interference (motor contagion). Participants were required to complete a motor contagion paradigm in which they executed horizontal arm movements while observing congruent (horizontal) or incongruent (vertical) arm movements of a model. This task was completed before and after a training protocol in which participants executed the same horizontal arm movements in the absence of the model stimuli. Different groups of participants trained with or without vision of their moving limb. Analysis of participants who were predisposed to motor contagion (involuntary movement interference during the observation of incongruent movements) revealed that the no vision group continued to demonstrate contagion at post-training, although the vision group did not. We propose that the vision group were able to integrate the visual afferent information with an internal model for action, which effectively refines the ability to match self-produced afferent and efferent sources of information during response-execution. This enhanced matching allows for a better distinction between self and other, which in turn, mediates the inhibition of motor contagion

    The Multiple Process Model of Goal-Directed Reaching Revisited

    Get PDF
    Recently our group forwarded a model of speed-accuracy relations in goal-directed reaching. A fundamental feature of our multiple process model was the distinction between two types of online regulation: impulse control and limb-target control. Impulse control begins during the initial stages of the movement trajectory and involves a comparison of actual limb velocity and direction to an internal representation of expectations about the limb trajectory. Limb-target control involves discrete error-reduction based on the relative positions of the limb and the target late in the movement. Our model also considers the role of eye movements, practice, energy optimization and strategic behavior in limb control. Here, we review recent work conducted to test specific aspects of our model. As well, we consider research not fully incorporated into our earlier contribution. We conclude that a slightly modified and expanded version of our model, that includes crosstalk between the two forms of online regulation, does an excellent job of explaining speed, accuracy, and energy optimization in goal-directed reaching

    Predicting erythropoietin resistance in hemodialysis patients with type 2 diabetes

    Get PDF
    <p>Background: Resistance to ESAs (erythropoietin stimulating agents) is highly prevalent in hemodialysis patients with diabetes and associated with an increased mortality. The aim of this study was to identify predictors for ESA resistance and to develop a prediction model for the risk stratification in these patients.</p> <p>Methods: A post-hoc analysis was conducted of the 4D study, including 1015 patients with type 2 diabetes undergoing hemodialysis. Determinants of ESA resistance were identified by univariate logistic regression analyses. Subsequently, multivariate models were performed with stepwise inclusion of significant predictors from clinical parameters, routine laboratory and specific biomarkers.</p> <p>Results: In the model restricted to clinical parameters, male sex, shorter dialysis vintage, lower BMI, history of CHF, use of ACE-inhibitors and a higher heart rate were identified as independent predictors of ESA resistance. In regard to routine laboratory markers, lower albumin, lower iron saturation, higher creatinine and higher potassium levels were independently associated with ESA resistance. With respect to specific biomarkers, higher ADMA and CRP levels as well as lower Osteocalcin levels were predictors of ESA resistance.</p> <p>Conclusions: Easily obtainable clinical parameters and routine laboratory parameters can predict ESA resistance in diabetic hemodialysis patients with good discrimination. Specific biomarkers did not meaningfully further improve the risk prediction of ESA resistance. Routinely assessed data can be used in clinical practice to stratify patients according to the risk of ESA resistance, which may help to assign appropriate treatment strategies.</p&gt
    • …
    corecore