2,048 research outputs found

    Human response to vibration in residential environments, technical report 1 : measurement of vibration exposure

    Get PDF
    The Technical Report 1 describes the research undertaken to develop a method by which human exposure to vibration in residential environments can be assessed. That work has been carried out by the University of Salford supported by the Department of environment food and rural affairs (Defra). The overall aim of the project is to derive exposure-response relationships for human vibration in residential environments. This document in particular focuses on the equipment and methodology employed to measure vibration from different sources. The main objective of this report is to describe the practical experience of implementing a vibration measurement protocol. Reported here are findings obtained in the field measurements and a description of a feasible method for measuring vibration for different sources. In addition, controlled tests performed to determine the suitability of the vibration mounting for various practical situations are reported

    Noise and vibration from building-mounted micro wind turbines Part 2: Results of measurements and analysis

    Get PDF
    Description To research the quantification of vibration from a micro turbine, and to develop a method of prediction of vibration and structure borne noise in a wide variety of installations in the UK. Objective The objectives of the study are as follows: 1) Develop a methodology to quantify the amount of source vibration from a building mounted micro wind turbine installation, and to predict the level of vibration and structure-borne noise impact within such buildings in the UK. 2) Test and validate the hypothesis on a statically robust sample size 3) Report the developed methodology in a form suitable for widespread adoption by industry and regulators, and report back on the suitability of the method on which to base policy decisions for a future inclusion for building mounted turbines in the GPDO

    Noise and vibration from building-mounted micro wind turbines part 3 : prediction methodology

    Get PDF
    This brief report describes a simplified method for estimation of levels of structure-borne sound in buildings to which a micro-wind turbine (MWT) is attached. The method is applicable to two specific designs of MWT, each for three lengths of mounting pole and for masonry buildings. The output gives expected noise level for given rotational speed of the MWT. Applicability and limitations of the method are described. A more general methodology is provided in companion reports but requires specialist knowledge to implement. Structure-borne sound is notoriously difficult to predict and several assumptions have been necessary in order to produce a sufficiently simple estimation method. Therefore, caution is required in relying on the predictions until sufficient confidence has been built up through experience of real installations

    Delineation of the Innate and Adaptive T-Cell Immune Outcome in the Human Host in Response to Campylobacter jejuni Infection

    Get PDF
    Background: Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Despite the significant health burden this infection presents, molecular understanding of C. jejuni-mediated disease pathogenesis remains poorly defined. Here, we report the characterisation of the early, innate immune response to C. jejuni using an ex-vivo human gut model of infection. Secondly, impact of bacterial-driven dendritic cell activation on T-cell mediated immunity was also sought.Methodology: Healthy, control paediatric terminal ileum or colonic biopsy tissue was infected with C. jejuni for 8-12 hours. Bacterial colonisation was followed by confocal microscopy and mucosal innate immune responses measured by ELISA. Marked induction of IFN gamma with modest increase in IL-22 and IL-17A was noted. Increased mucosal IL-12, IL-23, IL-1 beta and IL-6 were indicative of a cytokine milieu that may modulate subsequent T-cell mediated immunity. C. jejuni-driven human monocyte-derived dendritic cell activation was followed by analyses of T cell immune responses utilising flow cytometry and ELISA. Significant increase in Th-17, Th-1 and Th-17/Th-1 double-positive cells and corresponding cytokines was observed. The ability of IFN gamma, IL-22 and IL-17 cytokines to exert host defence via modulation of C. jejuni adhesion and invasion to intestinal epithelia was measured by standard gentamicin protection assay.Conclusions: Both innate and adaptive T cell-immunity to C. jejuni infection led to the release of IFN gamma, IL-22 and IL-17A; suggesting a critical role for this cytokine triad in establishing host anti-microbial immunity during the acute and effectors phase of infection. In addition, to their known anti-microbial functions; IL-17A and IL-17F reduced the number of intracellular C. jejuni in intestinal epithelia, highlighting a novel aspect of how IL-17 family members may contribute to protective immunity against C. jejuni

    Noise and vibration from building-mounted micro wind turbines Part 1: Review and proposed methodology

    Get PDF
    Description To research the quantification of vibration from a micro turbine, and to develop a method of prediction of vibration and structure borne noise in a wide variety of installations in the UK. Objective The objectives of the study are as follows: 1) Develop a methodology to quantify the amount of source vibration from a building mounted micro wind turbine installation, and to predict the level of vibration and structure-borne noise impact within such buildings in the UK. 2) Test and validate the hypothesis on a statically robust sample size 3) Report the developed methodology in a form suitable for widespread adoption by industry and regulators, and report back on the suitability of the method on which to base policy decisions for a future inclusion for building mounted turbines in the GPDO

    Issues potentially affecting quality of life arising from long-term medicines use: a qualitative study

    Get PDF
    Background Polypharmacy is increasing and managing large number of medicines may create a burden for patients. Many patients have negative views of medicines and their use can adversely affect quality of life. No studies have specifically explored the impact of general long-term medicines use on quality of life. Objective To determine the issues which patients taking long-term medicines consider affect their day-to-day lives, including quality of life. Setting Four primary care general practices in North West England Methods Face-to-face interviews with adults living at home, prescribed four or more regular medicines for at least 1 year. Interviewees were identified from primary care medical records and purposively selected to ensure different types of medicines use. Interviews were recorded, transcribed and analysed thematically. Results Twenty-one interviews were conducted and analysed. Patients used an average of 7.8 medicines, 51 % were preventive, 40 % for symptom relief and 9 % treatment. Eight themes emerged: relationships with health professionals, practicalities, information, efficacy, side effects, attitudes, impact and control. Ability to discuss medicines with health professionals varied and many views were coloured by negative experiences, mainly with doctors. All interviewees had developed routines for using multiple medicines, some requiring considerable effort. Few felt able to exert control over medicines routines specified by health professionals. Over half sought additional information about medicines whereas others avoided this, trusting in doctors to guide their medicines use. Patients recognised their inability to assess efficacy for many medicines, notably those used for prophylaxis. All were concerned about possible side effects and some had poor experiences of discussing concerns with doctors. Medicines led to restrictions on social activities and personal life to the extent that, for some, life can revolve around medicines. Conclusion There is a multiplicity and complexity of issues surrounding medicines use, which impact on day-to-day lives for patients with long-term conditions. While most patients adapt to long-term medicines use, others did so at some cost to their quality of life

    Fluorescence characterization of clinically-important bacteria

    Get PDF
    Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination
    • …
    corecore