3,582 research outputs found

    The P2X(7 )receptor is a candidate product of murine and human lupus susceptibility loci: a hypothesis and comparison of murine allelic products

    Get PDF
    Systemic lupus erythematosus and its murine equivalent, modelled in the New Zealand Black and New Zealand White (NZB × NZW)F(1 )hybrid strain, are polygenic inflammatory diseases, probably reflecting an autoimmune response to debris from cells undergoing programmed cell death. Several human and murine loci contributing to disease have been defined. The present study asks whether the proinflammatory purinergic receptor P2X(7), an initiator of a form of programmed cell death known as aponecrosis, is a candidate product of murine and human lupus susceptibility loci. One such locus in (NZB × NZW)F(1 )mice is lbw3, which is situated at the distal end of NZW chromosome 5. We first assess whether NZB mice and NZW mice carry distinct alleles of the P2RX(7 )gene as expressed by common laboratory strains, which differ in sensitivity to ATP stimulation. We then compare the responses of NZB lymphocytes, NZW lymphocytes and (NZB × NZW)F(1 )lymphocytes to P2X(7 )stimulation. NZB and NZW parental strains express the distinct P2X(7)-L and P2X(7)-P alleles of P2RX(7), respectively, while lymphocytes from these and (NZB × NZW)F(1 )mice differ markedly in their responses to P2X(7 )receptor stimulation. NZB mice and NZW mice express functionally distinct alleles of the proinflammatory receptor, P2X(7). We show that current mapping suggests that murine and human P2RX(7 )receptor genes lie within lupus susceptibility loci lbw3 and SLEB4, and we argue that these encode a product with the functional characteristics consistent with a role in lupus. Furthermore, we argue that aponecrosis as induced by P2X(7 )is a cell death mechanism with characteristics that potentially have particular relevance to disease pathogenesis

    Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines

    Get PDF
    BackgroundPolymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies.MethodsWe aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence.ResultsWe found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis.ConclusionsAntigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines

    Design and fabrication of 3-D printed conductive polymer structures for THz polarization control

    Get PDF
    In this paper, we numerically and experimentally demonstrate the inverse polarization effect in three-dimensional (3-D) printed polarizers for the frequency range of 0.5 - 2.7 THz. The polarizers simply consist of 3-D printed strip lines of conductive polylactic acid (CPLA, Proto-Pasta) and do not require a substrate or any further metallic deposition. The experimental and numerical results show that the proposed structure acts as a broadband polarizer between the range of 0.3 THz to 2.7 THz, in which the inverse polarization effect is clearly seen for frequencies above 0.5 THz. In the inverse polarization effect, the transmission of the transverse electric (TE) component exceeds that of the TM component, in contrast to the behavior of a typical wire-grid polarizer. We show how the performance of the polarizers depends on the spacing and thickness of the CPLA structure; extinction ratios higher than 20 dB are achieved. This is the first report using CPLA to fabricate THz polarizers, demonstrating the potential of using conductive polymers to design THz components efficiently and robustly

    Competing risks of death in women treated with adjuvant aromatase inhibitors for early breast cancer on NCIC CTG MA.27

    Get PDF
    Baseline patient and tumor characteristics differentially affected type of death in the MA.17 placebo-controlled letrozole trial where cardiovascular death was not separately identified. The MA.27 trial allowed competing risks analysis of breast cancer (BC), cardiovascular, and other type (OT) of death. MA.27 was a phase III adjuvant breast cancer trial of exemestane versus anastrozole. Effects of baseline patient and tumor characteristics were tested for whether factors were associated with (1) all cause mortality and (2) cause-specific mortality. We also fit step-wise forward cause-specific-adjusted models. 7576 women (median age 64 years; 5417 (72 %) < 70 years and 2159 (28 %) ≥ 70 years) were enrolled and followed for median 4.1 years. The 432 deaths comprised 187 (43 %) BC, 66 (15 %) cardiovascular, and 179 (41 %) OT. Five baseline factors were differentially associated with type of death. Older patients had greater BC (p = 0.03), cardiovascular (p < 0.001), and other types (p < 0.001) of mortality. Patients with pre-existing cardiovascular history had worse cardiovascular mortality (p < 0.001); those with worse ECOG performance status had worse OT mortality (p < 0.001). Patients with T1 tumors (p < 0.001) and progesterone receptor positive had less BC mortality (p < 0.001). Fewer BC deaths occurred with node-negative disease (p < 0.001), estrogen receptor-positive tumors (p = 0.001), and without adjuvant chemotherapy (p = 0.005); worse cardiovascular mortality (p = 0.01), with trastuzumab; worse OT mortality, for non-whites (p = 0.03) and without adjuvant radiotherapy (p = 0.003). Overall, 57 % of deaths in MA.27 AI-treated patients were non-breast cancer related. Baseline patient and tumor characteristics differentially affected type of death with women 70 or older experiencing more non-breast cancer death

    Quantifying the Importance of MSP1-19 as a Target of Growth-Inhibitory and Protective Antibodies against Plasmodium falciparum in Humans

    Get PDF
    BACKGROUND: Antibodies targeting blood stage antigens are important in protection against malaria, but the key targets and mechanisms of immunity are not well understood. Merozoite surface protein 1 (MSP1) is an abundant and essential protein. The C-terminal 19 kDa region (MSP1-19) is regarded as a promising vaccine candidate and may also be an important target of immunity. METHODOLOGY/FINDINGS: Growth inhibitory antibodies against asexual-stage parasites and IgG to recombinant MSP1-19 were measured in plasma samples from a longitudinal cohort of 206 children in Papua New Guinea. Differential inhibition by samples of mutant P. falciparum lines that expressed either the P. falciparum or P. chabaudi form of MSP1-19 were used to quantify MSP1-19 specific growth-inhibitory antibodies. The great majority of children had detectable IgG to MSP1-19, and high levels of IgG were significantly associated with a reduced risk of symptomatic P. falciparum malaria during the 6-month follow-up period. However, there was little evidence of PfMSP1-19 specific growth inhibition by plasma samples from children. Similar results were found when testing non-dialysed or dialysed plasma, or purified antibodies, or when measuring growth inhibition in flow cytometry or microscopy-based assays. Rabbit antisera generated by immunization with recombinant MSP1-19 demonstrated strong MSP1-19 specific growth-inhibitory activity, which appeared to be due to much higher antibody levels than human samples; antibody avidity was similar between rabbit antisera and human plasma. CONCLUSIONS/SIGNIFICANCE: These data suggest that MSP1-19 is not a major target of growth inhibitory antibodies and that the protective effects of antibodies to MSP1-19 are not due to growth inhibitory activity, but may instead be mediated by other mechanisms. Alternatively, antibodies to MSP1-19 may act as a marker of protective immunity

    Alpha kinase 3 signaling at the M-band maintains sarcomere integrity and proteostasis in striated muscle

    Get PDF
    Muscle contraction is driven by the molecular machinery of the sarcomere. As phosphorylation is a critical regulator of muscle function, the identification of regulatory kinases is important for understanding sarcomere biology. Pathogenic variants in alpha kinase 3 (ALPK3) cause cardiomyopathy and musculoskeletal disease, but little is known about this atypical kinase. Here we show that ALPK3 is an essential component of the M-band of the sarcomere and define the ALPK3-dependent phosphoproteome. ALPK3 deficiency impaired contractility both in human cardiac organoids and in the hearts of mice harboring a pathogenic truncating Alpk3 variant. ALPK3-dependent phosphopeptides were enriched for sarcomeric components of the M-band and the ubiquitin-binding protein sequestosome-1 (SQSTM1) (also known as p62). Analysis of the ALPK3 interactome confirmed binding to M-band proteins including SQSTM1. In human pluripotent stem cell-derived cardiomyocytes modeling cardiomyopathic ALPK3 mutations, sarcomeric organization and M-band localization of SQSTM1 were abnormal suggesting that this mechanism may underly disease pathogenesis

    Phase separation due to quantum mechanical correlations

    Full text link
    Can phase separation be induced by strong electron correlations? We present a theorem that affirmatively answers this question in the Falicov-Kimball model away from half-filling, for any dimension. In the ground state the itinerant electrons are spatially separated from the classical particles.Comment: 4 pages, 1 figure. Note: text and figure unchanged, title was misspelle

    Measurement of the solar neutrino capture rate with gallium metal

    Get PDF
    The solar neutrino capture rate measured by the Russian-American Gallium Experiment (SAGE) on metallic gallium during the period January 1990 through December 1997 is 67.2 (+7.2-7.0) (+3.5-3.0) SNU, where the uncertainties are statistical and systematic, respectively. This represents only about half of the predicted Standard Solar Model rate of 129 SNU. All the experimental procedures, including extraction of germanium from gallium, counting of 71Ge, and data analysis are discussed in detail.Comment: 34 pages including 14 figures, Revtex, slightly shortene

    Striatal intrinsic reinforcement signals during recognition memory: relationship to response bias and dysregulation in schizophrenia

    Get PDF
    Ventral striatum (VS) is a critical brain region for reinforcement learning and motivation, and VS hypofunction is implicated in psychiatric disorders including schizophrenia. Providing rewards or performance feedback has been shown to activate VS. Intrinsically motivated subjects performing challenging cognitive tasks are likely to engage reinforcement circuitry even in the absence of external feedback or incentives. However, such intrinsic reinforcement responses have received little attention, have not been examined in relation to behavioral performance, and have not been evaluated for impairment in neuropsychiatric disorders such as schizophrenia. Here we used fMRI to examine a challenging “old” vs. “new” visual recognition task in healthy subjects and patients with schizophrenia. Targets were unique fractal stimuli previously presented as salient distractors in a visual oddball task, producing incidental memory encoding. Based on the prediction error theory of reinforcement learning, we hypothesized that correct target recognition would activate VS in controls, and that this activation would be greater in subjects with lower expectation of responding correctly as indexed by a more conservative response bias. We also predicted these effects would be reduced in patients with schizophrenia. Consistent with these predictions, controls activated VS and other reinforcement processing regions during correct recognition, with greater VS activation in those with a more conservative response bias. Patients did not show either effect, with significant group differences suggesting hyporesponsivity in patients to internally generated feedback. These findings highlight the importance of accounting for intrinsic motivation and reward when studying cognitive tasks, and add to growing evidence of reward circuit dysfunction in schizophrenia that may impact cognition and function
    corecore