2,349 research outputs found
The Computer for Charting and Monitoring
book chapterBiomedical Informatic
Layer-thickness dependence of the conductive properties of Mo/Si multilayers
We report new measurements of the conductance and superconducting transition temperature of a set of Mo/Si multilayers, as a function of the metal layer thickness (from 7-85 Angstrom) for a constant semiconductor layer thickness of 22 Angstrom. Unlike previously reported measurements, we do not observe oscillations in either the resistivity, resistivity ratio, or the superconducting transition temperature with the metal layer thickness. Rather, we observe monotonic variations in the transport properties as the metal layer thickness increases. The sheet conductance and its change between 10 and 300 K both vary approximately linearly with the metal layer thickness, above a threshold thickness. The conductance starts to grow with metal layer thickness at approximately 10 Angstrom, whereas the temperature coefficient of resistance changes sign at approximately 25 Angstrom, exhibiting a Mooij correlation with a crossover resistivity of 125 mu Omega cm. The observed temperature dependence of the conductance rules out localization as the origin of the negative temperature coefficient of resistance. The conductance data are analyzed using a simple phenomenological model involving transport in interfacial and metallic layers, whose relative contribution to the conductance depends on the metal layer thickness and the temperature. The model is applied to separate two competing contributions that determine the overall temperature dependence of the conductance. We attribute the differences between our measurements and previous measurements to differences in bulk metallic conductivities and interface morphologies, due to differences in thermal evaporation versus sputtering fabrication processes. Our results show that the level and nature of disorder is an important ingredient in any theory that explains the cause of the observed oscillations
Distinguishing ecological from evolutionary approaches to transposable elements
Considerable variation exists not only in the kinds of transposable elements (TEs) occurring within the genomes of different species, but also in their abundance and distribution. Noting a similarity to the assortment of organisms among ecosystems, some researchers have called for an ecological approach to the study of transposon dynamics. However, there are several ways to adopt such an approach, and it is sometimes unclear what an ecological perspective will add to the existing co-evolutionary framework for explaining transposon-host interactions. This review aims to clarify the conceptual foundations of transposon ecology in order to evaluate its explanatory prospects. We begin by identifying three unanswered questions regarding the abundance and distribution of TEs that potentially call for an ecological explanation. We then offer an operational distinction between evolutionary and ecological approaches to these questions. By determining the amount of variance in transposon abundance and distribution that is explained by ecological and evolutionary factors, respectively, it is possible empirically to assess the prospects for each of these explanatory frameworks. To illustrate how this methodology applies to a concrete example, we analyzed whole-genome data for one set of distantly related mammals and another more closely related group of arthropods. Our expectation was that ecological factors are most informative for explaining differences among individual TE lineages, rather than TE families, and for explaining their distribution among closely related as opposed to distantly related host genomes. We found that, in these data sets, ecological factors do in fact explain most of the variation in TE abundance and distribution among TE lineages across less distantly related host organisms. Evolutionary factors were not significant at these levels. However, the explanatory roles of evolution and ecology become inverted at the level of TE families or among more distantly related genomes. Not only does this example demonstrate the utility of our distinction between ecological and evolutionary perspectives, it further suggests an appropriate explanatory domain for the burgeoning discipline of transposon ecology. The fact that ecological processes appear to be impacting TE lineages over relatively short time scales further raises the possibility that transposons might serve as useful model systems for testing more general hypotheses in ecology
Miniaturized data loggers and computer programming improve seabird risk and damage assessments for marine oil spills in Atlantic Canada
Obtaining useful information on marine birds that can aid in oil spill (and other hydrocarbon release) risk and damage assessments in offshore environments is challenging. Technological innovations in miniaturization have allowed archival data loggers to be deployed successfully on marine birds vulnerable to hydrocarbons on water. A number of species, including murres (both Common, Uria aalge, and Thick-billed, U. lomvia) have been tracked using geolocation
devices in eastern Canada, increasing our knowledge of the seasonality and colony-specific nature of their susceptibility to oil on water in offshore hydrocarbon production areas and major shipping lanes. Archival data tags are starting to resolve questions around behaviour of vulnerable seabirds at small spatial scales relevant to oil spill impact modelling, specifically to determine the duration and frequency at which birds fly at sea. Advances in data capture methods using voice activated software have eased the burden on seabird observers who are collecting
increasingly more detailed information on seabirds during ship-board and aerial transects. Computer programs that integrate seabird density and bird behaviour have been constructed, all with a goal of creating more credible seabird oil spill risk and damage assessments. In this paper, we discuss how each of these technological and computing innovations can help define critical inputs into seabird risk and damage assessments, and when combined, can provide a more realistic understanding of the impacts to seabirds from any hydrocarbon release
Genetics and genomics of pulmonary arterial hypertension
Major discoveries have been obtained within the last decade in the field of hereditary predisposition to pulmonary arterial hypertension (PAH). Among them, the identification of bone morphogenetic protein receptor type 2 (BMPR2) as the major predisposing gene and activin A receptor type II-like kinase-1 (ACVRL1, also known as ALK1) as the major gene when PAH is associated with hereditary hemorrhagic telangiectasia. The mutation detection rate for the known genes is approximately 75 in familial PAH, but the mutation shortfall remains unexplained even after careful molecular investigation of these genes. To identify additional genetic variants predisposing to PAH, investigators harnessed the power of next-generation sequencing to successfully identify additional genes that will be described in this report. Furthermore, common genetic predisposing factors for PAH can be identified by genome-wide association studies and are detailed in this paper. The careful study of families and routine genetic diagnosis facilitated natural history studies based on large registries of PAH patients to be set up in different countries. These longitudinal or cross-sectional studies permitted the clinical characterization of PAH in mutation carriers to be accurately described. The availability of molecular genetic diagnosis has opened up a new field for patient care, including genetic counseling for a severe disease, taking into account that the major predisposing gene has a highly variable penetrance between families. Molecular information can be drawn from the genomic study of affected tissues in PAH, in particular, pulmonary vascular tissues and cells, to gain insight into the mechanisms leading to the development of the disease. High-throughput genomic techniques, on the basis of next-generation sequencing, now allow the accurate quantification and analysis of ribonucleic acid, species, including micro-ribonucleic acids, and allow for a genome-wide investigation of epigenetic or regulatory mechanisms, which include deoxyribonucleic acid methylation, histone methylation, and acetylation, or transcription factor binding. Ă© 2013 by the American College of Cardiology Foundation. Published by Elsevier Inc
Phase behaviour in the LiBH4-LiBr system and structure of the anion-stabilised fast ionic, high temperature phase
The fast ionic, high temperature (HT) phase of LiBH4 can be stabilised by BrÂŻ substitution. Lithium borohydride bromide compounds, Li(BH4)1-xBrx have been synthesized mechanochemically, with and without thermal treatment and the resulting phase behaviour determined as a function of composition. Single phase materials exist for 0.29 †x †0.50 with conductivity two orders of magnitude higher than LiBH4 at 313 K. Powder neutron diffraction has been used to resolve the details of the crystal structure of one such compound. These demonstrate that 7Li(11BD4)2/3Br1/3 retains the HT structure (hexagonal space group P63mc, a â 4.2 Ă
, c â 6.7 Ă
) from 293-573 K. The borohydride bromide exhibits considerable static and dynamic disorder, the latter invoking complex rotational motion of the (BH4)ÂŻ anions
Multifidi muscle characteristics and physical function among older adults with and without chronic low back pain
To determine whether multifidi size, intramuscular fat, or both, are associated with self-reported and performance-based physical function in older adults with and without chronic low back pain (LBP).Case-control study.Individuals participated in a standardized evaluation in a clinical laboratory and underwent magnetic resonance imaging (MRI) of the lumbar spine at a nearby facility.A volunteer sample of community-dwelling older adults (N=106), aged 60 to 85 years, with (n=57) and without (n=49) chronic LBP were included in this secondary data analysis.Average right-left L5 multifidi relative (ie, total) cross-sectional area (CSA), muscle-fat infiltration index (MFI) (ie, a measure of intramuscular fat), and relative muscle CSA (rmCSA) (ie, total CSA minus intramuscular fat CSA) were determined from MRIs. Linear regression modeling was performed with physical function measures as the dependent variables. Age, sex, and body mass index were entered as covariates. The main effects of L5 multifidi MFI and rmCSA, as well as their interaction with group assignment, were compared as independent variables.Medical Outcomes Study 36-Item Short-Form Health Survey physical functioning subscale, timed Up and Go, gait speed, and fast stair descent performance.Interaction terms between L5 multifidi MFI and group assignment were found to be significant contributors to the variance explained in all physical function measures (Pâ€.012). Neither the main effect nor the interaction with group assignment for L5 multifidi rmCSA significantly contributed to the variance explained in any of the physical function measures (P>.012).Among older adults with chronic LBP of at least moderate intensity, L5 multifidi muscle composition, but not size, may help to explain physical function
Diminished Neural and Cognitive Responses to Facial Expressions of Disgust in Patients with Psoriasis: A Functional Magnetic Resonance Imaging Study
Psoriasis produces significant psychosocial disability; however, little is understood about the neurocognitive mechanisms that mediate the adverse consequences of the social stigma associated with visible skin lesions, such as disgusted facial expressions of others. Both the feeling of disgust and the observation of disgust in others are known to activate the insula cortex. We investigated whether the social impact of psoriasis is associated with altered cognitive processing of disgust using (i) a covert recognition of faces task conducted using functional magnetic resonance imaging (fMRI) and (ii) the facial expression recognition task (FERT), a decision-making task, conducted outside the scanner to assess the ability to recognize overtly different intensities of disgust. Thirteen right-handed male patients with psoriasis and 13 age-matched male controls were included. In the fMRI study, psoriasis patients had significantly (P<0.005) smaller signal responses to disgusted faces in the bilateral insular cortex compared with healthy controls. These data were corroborated by FERT, in that patients were less able than controls to identify all intensities of disgust tested. We hypothesize that patients with psoriasis, in this case male patients, develop a coping mechanism to protect them from stressful emotional responses by blocking the processing of disgusted facial expressions
Genetics and genomics of pulmonary arterial hypertension.
Since 2000 there have been major advances in our understanding of the genetic and genomics of pulmonary arterial hypertension (PAH), although there remains much to discover. Based on existing knowledge, around 25-30% of patients diagnosed with idiopathic PAH have an underlying Mendelian genetic cause for their condition and should be classified as heritable PAH (HPAH). Here, we summarise the known genetic and genomic drivers of PAH, the insights these provide into pathobiology, and the opportunities afforded for development of novel therapeutic approaches. In addition, factors determining the incomplete penetrance observed in HPAH are discussed. The currently available approaches to genetic testing and counselling, and the impact of a genetic diagnosis on clinical management of the patient with PAH, are presented. Advances in DNA sequencing technology are rapidly expanding our ability to undertake genomic studies at scale in large cohorts. In the future, such studies will provide a more complete picture of the genetic contribution to PAH and, potentially, a molecular classification of this disease
- âŠ