1,352 research outputs found

    DOES TECHNIQUE CHANGE AFFECT MUSCULAR SUPPORT AT THE KNEE IN SIDESTEP CUTTING?

    Get PDF
    Technique modification can reduce knee loads during sidestepping but its effect on muscular support has yet to be identified. Electromyography data was collected from ten muscles during sidestepping under planned and unplanned conditions, prior to and following training. Flexion/Extension and Medial/Lateral co-contraction ratios and total activation were calculated for pre-contact and weight acceptance phases. The only observed change due to training was unplanned tasks becoming more laterally dominated and planned tasks more medially. While significant these changes are nonfunctional as the ratios still represent high levels of co-contraction. Technique modification training should lower anterior cruciate ligament loads as it results in reduced knee moments but similar levels of muscular support, thus lowering the risk of injury

    MORPHOLOGY AND HYDRODYNAMIC RESISTANCE IN YOUNG SWIMMERS

    Get PDF
    Morphology and hydrodynamic drag were measured of 6 males and 6 females, from each of the 9, 11 and 13 yr age groups. Net forces were examined when towing swimmers while prone streamlined gliding and flutter kicking at 1.3 to 2.5 ms-1. The passive drag force at 1.9, 2.2 and 2.5 ms-1 increased with age and anthropometry, but no changes were found at 1.3 and 1.6 ms-1. Stepwise regression revealed passive drag best predicted net active drag at velocities of 1.3, 1.9, 2.2 and 2.5 ms-1. Results supported the Froude number theory that increased height will reduce wave-making drag

    OPTIMISING KINETICS IN THE FREESTYLE FLIP TURN PUSH-OFF

    Get PDF
    INTRODUCTION: Turning technique is an important component in swimming performance with turn times positively correlating with final event time. However, little is known about the mechanics of an effective turn. This study sought to provide an exploratory analysis of how various kinetic and hydrodynamic variables during wall push-off are related to the wall exit velocity. METHODS: Thirty experienced male swimmers with body types of within one SD of the mean for selected anthropometric parameters reported for elite male adult swimmers (Mazza et al., 1994) were recruited for the study. During three freestyle flip turns, selected kinetic, hydrodynamic and kinematic variables of the wall pushoff were recorded. The wall push-off phase was measured from the point of maximum knee flexion during wall contact until the feet left the wall. Kinetics were recorded via a 2D vertically mounted forceplate which recorded peak push-off force and total impulse. The acceleration of each swimmer’s centre of gravity (CG) and wall exit velocity of the CG were calculated from underwater videography. Hydrodynamic peak drag force and drag impulse were calculated from the kinetic and kinematic data using a derivative of Newton’s second law. RESULTS: A stepwise regression was performed with wall exit velocity as the criterion variable and push-off time, peak propulsive force, total propulsive impulse, peak drag force, and total drag impulse as the independent variables. The stepwise regression yielded peak drag force, peak propulsive force and push-off time in the equation, with beta values indicating that the peak drag force carried the highest weighting of the three variables. CONCLUSIONS: The results of the stepwise regression indicated that an optimal combination of a low peak drag force, high peak propulsive force and increased wall time produced the fastest wall exit velocity. The inclusion of the peak drag force in the regression equation as the most important predictor of wall exit velocity highlights the importance of drag in turning technique. Factors such as very high push-off forces and exaggerated movements during wall push-off may lead to higher peak drag forces which, in turn, could be detrimental to the overall turning performance

    THE CONTRIBUTION OF ELBOW EXTENSION TO WRIST SPEED IN CRICKET FAST BOWLERS

    Get PDF
    The purpose of this modelling study was to assess the sensitivity of wrist joint speed to systematic manipulations of empirical elbow joint flexion-extension kinematic profiles. The joint kinematic profiles of 12 cricket fast bowlers were entered into a Forward Kinematic Model and the elbow joint kinematic profiles were subsequently amplified to elicit wrist speed changes. An amplification factor of zero decreased wrist speed by a mean of 8.6% (± 6.9%), whereas an amplification factor of two increased speed by a mean of 8.8% (± 7.1%). An opposite relationship was found for two participants who extended the elbow joint prior to release and it is proposed that an internally rotated humerus will displace the wrist joint posteriorly when the elbow joint is extending

    Do dance floor force reduction and static stiffness represent dynamic floor stiffness during dance landings?

    Get PDF
    Dance training on floors that are not \u27sprung\u27 are assumed to have direct implications for injury. Standards for dance floor manufacture in Europe and North America quantify floor force reduction by measuring the impact forces of drop masses. In addition, many studies of human mechanical adaptations to varied surfaces, have quantified test surfaces using measures of static stiffness. It is unclear whether these methods for the measurement of floor mechanical properties actually reflect dancer requirements or floor behaviour under dancer loading. The aim of this study was to compare the force reduction, static stiffness and dynamic stiffness of a range of dance floors. Dynamic stiffness was measured during dancers performing drop landings. Force reduction highly correlated (p= 0.086) with floors of moderate dynamic stiffness, but was less accurate for high and low stiffness floors. Static stiffness underestimated the dynamic stiffness of the floors. Measurement of floor force reduction using European sports surface standards may provide an accurate representation of dynamic floor stiffness when under load from dancers performing drop landings. The discrepancy between static and dynamic stiffness may be explained by the inertial characteristics of the floor and the rapid loading of the floors during dancer landings. The development of portable systems for measuring floor behaviour under human loads using modern motion capture technologies may be beneficial for improving the quantification of dance floor mechanical properties

    Shell model description of normal parity bands in odd-mass heavy deformed nuclei

    Get PDF
    The low-energy spectra and B(E2) electromagnetic transition strengths of 159Eu, 159Tb and 159Dy are described using the pseudo SU(3) model. Normal parity bands are built as linear combinations of SU(3) states, which are the direct product of SU(3) proton and neutron states with pseudo spin zero (for even number of nucleons) and pseudo spin 1/2 (for odd number of nucleons). Each of the many-particle states have a well-defined particle number and total angular momentum. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms which are diagonal in the SU(3) basis. The pseudo SU(3) model is shown to be a powerful tool to describe odd-mass heavy deformed nuclei.Comment: 11 pages, 2 figures, Accepted to be published in Phys. Rev.

    Striatal intrinsic reinforcement signals during recognition memory: relationship to response bias and dysregulation in schizophrenia

    Get PDF
    Ventral striatum (VS) is a critical brain region for reinforcement learning and motivation, and VS hypofunction is implicated in psychiatric disorders including schizophrenia. Providing rewards or performance feedback has been shown to activate VS. Intrinsically motivated subjects performing challenging cognitive tasks are likely to engage reinforcement circuitry even in the absence of external feedback or incentives. However, such intrinsic reinforcement responses have received little attention, have not been examined in relation to behavioral performance, and have not been evaluated for impairment in neuropsychiatric disorders such as schizophrenia. Here we used fMRI to examine a challenging “old” vs. “new” visual recognition task in healthy subjects and patients with schizophrenia. Targets were unique fractal stimuli previously presented as salient distractors in a visual oddball task, producing incidental memory encoding. Based on the prediction error theory of reinforcement learning, we hypothesized that correct target recognition would activate VS in controls, and that this activation would be greater in subjects with lower expectation of responding correctly as indexed by a more conservative response bias. We also predicted these effects would be reduced in patients with schizophrenia. Consistent with these predictions, controls activated VS and other reinforcement processing regions during correct recognition, with greater VS activation in those with a more conservative response bias. Patients did not show either effect, with significant group differences suggesting hyporesponsivity in patients to internally generated feedback. These findings highlight the importance of accounting for intrinsic motivation and reward when studying cognitive tasks, and add to growing evidence of reward circuit dysfunction in schizophrenia that may impact cognition and function

    Sexuality generates diversity in the Aflatoxin Gene cluster: evidence on a global scale

    Get PDF
    Aflatoxins are produced by Aspergillus flavus and A. parasiticus in oil-rich seed and grain crops and are a serious problem in agriculture, with aflatoxin B1 being the most carcinogenic natural compound known. Sexual reproduction in these species occurs between individuals belonging to different vegetative compatibility groups (VCGs). We examined natural genetic variation in 758 isolates of A. flavus, A. parasiticus and A. minisclerotigenes sampled from single peanut fields in the United States (Georgia), Africa (Benin), Argentina (Co´rdoba), Australia (Queensland) and India (Karnataka). Analysis of DNA sequence variation across multiple intergenic regions in the aflatoxin gene clusters of A. flavus, A. parasiticus and A. minisclerotigenes revealed significant linkage disequilibrium (LD) organized into distinct blocks that are conserved across different localities, suggesting that genetic recombination is nonrandom and a global occurrence. To assess the contributions of asexual and sexual reproduction to fixation and maintenance of toxin chemotype diversity in populations from each locality/species, we tested the null hypothesis of an equal number of MAT1-1 and MAT1-2 mating-type individuals, which is indicative of a sexually recombining population. All samples were clone-corrected using multi-locus sequence typing which associates closely with VCG. For both A. flavus and A. parasiticus, when the proportions of MAT1-1 and MAT1-2 were significantly different, there was more extensive LD in the aflatoxin cluster and populations were fixed for specific toxin chemotype classes, either the non-aflatoxigenic class in A. flavus or the B1-dominant and G1-dominant classes in A. parasiticus. A mating type ratio close to 1:1 in A. flavus, A. parasiticus and A. minisclerotigenes was associated with higher recombination rates in the aflatoxin cluster and less pronounced chemotype differences in populations. This work shows that the reproductive nature of the population (more sexual versus more asexual) is predictive of aflatoxin chemotype diversity in these agriculturally important fungi.Fil: Moore, Geromy G.. United States Department of Agriculture; Estados UnidosFil: Elliott, Jacalyn L.. University Of North Carolina; Estados UnidosFil: Singh, Rakhi. University Of North Carolina; Estados UnidosFil: Horn, Bruce W.. United States Department Of Agriculture; Estados UnidosFil: Dorner, Jeo W.. United States Department Of Agriculture; Estados UnidosFil: Stone, Eric A.. University Of North Carolina; Estados UnidosFil: Chulze, Sofia Noemi. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología E Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barros, Germán Gustavo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología E Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Naik, Manjunath K.. College of Agriculture. Department of Plant Pathology; IndiaFil: Wright, Graeme C.. Department of Primary Industries; AustraliaFil: Hell, Kerstin. International Institute of Tropical Agriculture; BenínFil: Carbone, Ignazio. University Of North Carolina; Estados Unido
    corecore