9,499 research outputs found

    Achievement goals, self-handicapping, and performance: A 2 × 2 achievement goal perspective

    Get PDF
    Elliot and colleagues (2006) examined the effects of experimentally induced achievement goals, proposed by the trichotomous model, on self-handicapping and performance in physical education. Our study replicated and extended the work of Elliot et al. by experimentally promoting all four goals proposed by the 262 model (Elliot & McGregor, 2001), measuring the participants’ own situational achievement goals, using a relatively novel task, and testing the participants in a group setting. We used a randomized experimental design with four conditions that aimed to induce one of the four goals advanced by the 262 model. The participants (n¼138) were undergraduates who engaged in a dart-throwing task. The results pertaining to self-handicapping partly replicated Elliot and colleagues’ findings by showing that experimentally promoted performance-avoidance goals resulted in less practice. In contrast, the promotion of mastery-avoidance goals did not result in less practice compared with either of the approach goals. Dart-throwing performance did not differ among the four goal conditions. Personal achievement goals did not moderate the effects of experimentally induced goals on selfhandicapping and performance. The extent to which mastery-avoidance goals are maladaptive is discussed, as well as the interplay between personal and experimentally induced goals

    Coulomb and quantum oscillator problems in conical spaces with arbitrary dimensions

    Get PDF
    The Schr\"odinger equations for the Coulomb and the Harmonic oscillator potentials are solved in the cosmic-string conical space-time. The spherical harmonics with angular deficit are introduced. The algebraic construction of the harmonic oscillator eigenfunctions is performed through the introduction of non-local ladder operators. By exploiting the hidden symmetry of the two-dimensional harmonic oscillator the eigenvalues for the angular momentum operators in three dimensions are reproduced. A generalization for N-dimensions is performed for both Coulomb and harmonic oscillator problems in angular deficit space-times. It is thus established the connection among the states and energies of both problems in these topologically non-trivial space-times.Comment: 15 page

    Military Misfortunes: The Anatomy of Failure in War

    Get PDF

    Spectral Geometry of Heterotic Compactifications

    Get PDF
    The structure of heterotic string target space compactifications is studied using the formalism of the noncommutative geometry associated with lattice vertex operator algebras. The spectral triples of the noncommutative spacetimes are constructed and used to show that the intrinsic gauge field degrees of freedom disappear in the low-energy sectors of these spacetimes. The quantum geometry is thereby determined in much the same way as for ordinary superstring target spaces. In this setting, non-abelian gauge theories on the classical spacetimes arise from the K-theory of the effective target spaces.Comment: 14 pages LaTe

    Phylogeography of Stable Fly (Diptera: Muscidae) Estimated by Diversity at Ribosomal 16S and Cytochrome Oxidase I Mitochondrial Genes

    Get PDF
    The blood-feeding cosmopolitan stable fly, Stomoxys calcitrans L. (Diptera: Muscidae), is thought to disperse rapidly and widely, and earlier studies of allozyme variation were consistent with high vagility in this species. The geographic origins of New World populations are unknown. Diversity at mitochondrial loci r16S and cytochrome oxidase I was examined in 277 stable flies from 11 countries, including five zoogeographical regions. Of 809 nucleotides, 174 were polymorphic and 133 were parsimony informative. Seventy-six haplotypes were found in frequencies consistent with the Wright–Fisher infinite allele model. None were shared among four or more zoogeographical regions. The null hypothesis of mutation neutrality was not rejected, thereby validating the observed distribution. Fifty-nine haplotypes were singular, eight were private and confined to the Old World, and three of 76 haplotypes were shared between the Old and New World. Only 19 haplotypes were found in the New World, 14 of which were singletons. Haplotype and nucleotide diversities were heterogeneous among countries and regions. The most diversity was observed in sub-Saharan Africa. Regional differentiation indices were GRT = 0.26 and NRT = 0.31, indicating populations were highly structured macrogeographically. Palearctic and New World flies were the least differentiated from each other. There were strong genetic similarities among populations in the Nearctic, Neotropical, and Palearctic regions, and it is most likely that New World populations were derived from the Palearctic after 1492 CE, in the colonial era

    Charon's radius and density from the combined data sets of the 2005 July 11 occultation

    Full text link
    The 2005 July 11 C313.2 stellar occultation by Charon was observed by three separate research groups, including our own, at observatories throughout South America. Here, the published timings from the three data sets have been combined to more accurately determine the mean radius of Charon: 606.0 +/- 1.5 km. Our analysis indicates that a slight oblateness in the body (0.006 +/- 0.003) best matches the data, with a confidence level of 86%. The oblateness has a pole position angle of 71.4 deg +/- 10.4 deg and is consistent with Charon's pole position angle of 67 deg. Charon's mean radius corresponds to a bulk density of 1.63 +/- 0.07 g/cm3, which is significantly less than Pluto's (1.92 +/- 0.12 g/cm3). This density differential favors an impact formation scenario for the system in which at least one of the impactors was differentiated. Finally, unexplained differences between chord timings measured at Cerro Pachon and the rest of the data set could be indicative of a depression as deep as 7 km on Charon's limb.Comment: 25 pages including 4 tables and 2 figures. Submitted to the Astronomical Journal on 2006 Feb 0

    Overlap of heritable influences between Cannabis Use Disorder, frequency of use and opportunity to use cannabis: Trivariate twin modelling and implications for genetic design

    Get PDF
    Background: The genetic component of Cannabis Use Disorder may overlap with influences acting more generally on early stages of cannabis use. This paper aims to determine the extent to which genetic influences on the development of cannabis abuse/dependence are correlated with those acting on the opportunity to use cannabis and frequency of use. Methods: A cross-sectional study of 3303 Australian twins, measuring age of onset of cannabis use opportunity, lifetime frequency of cannabis use, and lifetime DSM-IV cannabis abuse/dependence. A trivariate Cholesky decomposition estimated additive genetic (A), shared environment (C) and unique environment (E) contributions to the opportunity to use cannabis, the frequency of cannabis use, cannabis abuse/dependence, and the extent of overlap between genetic and environmental factors associated with each phenotype. Results: Variance components estimates were A = 0.64 [95% confidence interval (CI) 0.58–0.70] and E = 0.36 (95% CI 0.29–0.42) for age of opportunity to use cannabis, A = 0.74 (95% CI 0.66–0.80) and E = 0.26 (95% CI 0.20–0.34) for cannabis use frequency, and A = 0.78 (95% CI 0.65–0.88) and E = 0.22 (95% CI 0.12–0.35) for cannabis abuse/dependence. Opportunity shares 45% of genetic influences with the frequency of use, and only 17% of additive genetic influences are unique to abuse/dependence from those acting on opportunity and frequency. Conclusions: There are significant genetic contributions to lifetime cannabis abuse/dependence, but a large proportion of this overlaps with influences acting on opportunity and frequency of use. Individuals without drug use opportunity are uninformative, and studies of drug use disorders must incorporate individual exposure to accurately identify aetiology

    Group projector generalization of dirac-heisenberg model

    Full text link
    The general form of the operators commuting with the ground representation (appearing in many physical problems within single particle approximation) of the group is found. With help of the modified group projector technique, this result is applied to the system of identical particles with spin independent interaction, to derive the Dirac-Heisenberg hamiltonian and its effective space for arbitrary orbital occupation numbers and arbitrary spin. This gives transparent insight into the physical contents of this hamiltonian, showing that formal generalizations with spin greater than 1/2 involve nontrivial additional physical assumptions.Comment: 10 page

    ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments

    Get PDF
    The Arabidopsis aberrant testa shape (ats) mutant produces a single integument instead of the two integuments seen in wild-type ovules. Cellular anatomy and patterns of marker gene expression indicate that the single integument results from congenital fusion of the two integuments of the wild type. Isolation of the ATS locus showed it to encode a member of the KANADI (KAN) family of putative transcription factors, previously referred to as KAN4. ATS was expressed at the border between the two integuments at the time of their initiation, with expression later confined to the abaxial layer of the inner integument. In an inner no outer (ino) mutant background, where an outer integument does not form, the ats mutation led to amorphous inner integument growth. The kan1 kan2 double mutant exhibits a similar amorphous growth of the outer integument without affecting inner integument growth. We hypothesize that ATS and KAN1/KAN2 play similar roles in the specification of polarity in the inner and outer integuments, respectively, that parallel the known roles of KAN proteins in promoting abaxial identity during leaf development. INO and other members of the YABBY gene family have been hypothesized to have similar parallel roles in outer integument and leaf development. Together, these two hypotheses lead us to propose a model for normal integument growth that also explains the described mutant phenotypes

    Systematic and Causal Corrections to the Coherent Potential Approximation

    Get PDF
    The Dynamical Cluster Approximation (DCA) is modified to include disorder. The DCA incorporates non-local corrections to local approximations such as the Coherent Potential Approximation (CPA) by mapping the lattice problem with disorder, and in the thermodynamic limit, to a self-consistently embedded finite-sized cluster problem. It satisfies all of the characteristics of a successful cluster approximation. It is causal, preserves the point-group and translational symmetry of the original lattice, recovers the CPA when the cluster size equals one, and becomes exact as NcN_c\to\infty. We use the DCA to study the Anderson model with binary diagonal disorder. It restores sharp features and band tailing in the density of states which reflect correlations in the local environment of each site. While the DCA does not describe the localization transition, it does describe precursor effects of localization.Comment: 11 pages, LaTeX, and 11 PS figures, to appear in Phys. Rev. B. Revised version with typos corrected and references adde
    corecore