1,072 research outputs found

    Thyroid markers and body composition predict LDL-cholesterol change in lean healthy women on a ketogenic diet: experimental support for the lipid energy model

    Get PDF
    Introduction: There is a large heterogeneity in LDL-cholesterol change among individuals adopting ketogenic diets. Interestingly, lean metabolically healthy individuals seem to be particularly susceptible, with an inverse association between body mass index and LDL-cholesterol change. The lipid energy model proposes that, in lean healthy individuals, carbohydrate restriction upregulates systemic lipid trafficking to meet energy demands. To test if anthropometric and energy metabolism markers predict LDL-cholesterol change during carbohydrate restriction. Methods: Ten lean, healthy, premenopausal women who habitually consumed a ketogenic diet for ≥6 months were engaged in a three-phase crossover study consisting of continued nutritional ketosis, suppression of ketosis with carbohydrate reintroduction, and return to nutritional ketosis. Each phase lasted 21 days. The predictive performance of all available relevant variables was evaluated with the linear mixed-effects models. Results: All body composition metrics, free T3 and total T4, were significantly associated with LDL-cholesterol change. In an interaction model with BMI and free T3, both markers were significant independent and interacting predictors of LDL-cholesterol change. Neither saturated fat, HOMA-IR, leptin, adiponectin, TSH, nor rT3 was associated with LDL-cholesterol changes. Discussion: Among lean, healthy women undergoing carbohydrate restriction, body composition and energy metabolism markers are major drivers of LDL-cholesterol change, not saturated fat, consistent with the lipid energy model

    Prevalidation of Salivary Biomarkers for Oral Cancer Detection

    Get PDF
    Background: Oral cancer is the sixth most common cancer with a 5-year survival rate of approximately 60%. Presently, there are no scientifically credible early detection techniques beyond conventional clinical oral examination. The goal of this study is to validate whether the seven mRNAs and three proteins previously reported as biomarkers are capable of discriminating patients with oral squamous cell carcinomas (OSCC) from healthy subjects in independent cohorts and by a National Cancer Institute (NCI)-Early Detection Research Network (EDRN)-Biomarker Reference Laboratory (BRL). Methods: Three hundred and ninety-five subjects from five independent cohorts based on case controlled design were investigated by two independent laboratories, University of California, Los Angeles (Los Angeles, CA) discovery laboratory and NCI-EDRN-BRL. Results: Expression of all sevenmRNAand three protein markers was increased in OSCC versus controls in all five cohorts. With respect to individual marker performance across the five cohorts, the increase in interleukin (IL)-8 and subcutaneous adipose tissue (SAT) was statistically significant and they remained top performers across different cohorts in terms of sensitivity and specificity. A previously identified multiple marker model showed an area under the receiver operating characteristic (ROC) curve for prediction of OSCC status ranging from 0.74 to 0.86 across the cohorts. Conclusions: The validation of these biomarkers showed their feasibility in the discrimination of OSCCs from healthy controls. Established assay technologies are robust enough to perform independently. Individual cutoff values for each of these markers and for the combined predictive model need to be further defined in large clinical studies. Impact: Salivary proteomic and transcriptomic biomarkers can discriminate oral cancer from control subjects. ©2012 AACR

    Anger as “seeing red”: Evidence for a perceptual association

    Get PDF
    Metaphor representation theory contends that people conceptualise their non-perceptual states (e.g., emotion concepts) in perceptual terms. The present research extends this theory to colour manipulations and discrete emotional representations. Two experiments (N=265) examined whether a red font colour would facilitate anger conceptions, consistent with metaphors referring to anger to “seeing red”. Evidence for an implicit anger-red association was robust and emotionally discrete in nature. Further, Experiment 2 examined the directionality of such associations and found that they were asymmetrical: Anger categorisations were faster when a red font colour was involved, but redness categorisations were not faster when an anger-related word was involved. Implications for multiple literatures are discussed

    Pathosphere.org: pathogen detection and characterization through a web-based, open source informatics platform

    Get PDF
    Background The detection of pathogens in complex sample backgrounds has been revolutionized by wide access to next-generation sequencing (NGS) platforms. However, analytical methods to support NGS platforms are not as uniformly available. Pathosphere (found at Pathosphere.org) is a cloud - based open - sourced community tool that allows for communication, collaboration and sharing of NGS analytical tools and data amongst scientists working in academia, industry and government. The architecture allows for users to upload data and run available bioinformatics pipelines without the need for onsite processing hardware or technical support. Results The pathogen detection capabilities hosted on Pathosphere were tested by analyzing pathogen-containing samples sequenced by NGS with both spiked human samples as well as human and zoonotic host backgrounds. Pathosphere analytical pipelines developed by Edgewood Chemical Biological Center (ECBC) identified spiked pathogens within a common sample analyzed by 454, Ion Torrent, and Illumina sequencing platforms. ECBC pipelines also correctly identified pathogens in human samples containing arenavirus in addition to animal samples containing flavivirus and coronavirus. These analytical methods were limited in the detection of sequences with limited homology to previous annotations within NCBI databases, such as parvovirus. Utilizing the pipeline-hosting adaptability of Pathosphere, the analytical suite was supplemented by analytical pipelines designed by the United States Army Medical Research Insititute of Infectious Diseases and Walter Reed Army Institute of Research (USAMRIID-WRAIR). These pipelines were implemented and detected parvovirus sequence in the sample that the ECBC iterative analysis previously failed to identify. Conclusions By accurately detecting pathogens in a variety of samples, this work demonstrates the utility of Pathosphere and provides a platform for utilizing, modifying and creating pipelines for a variety of NGS technologies developed to detect pathogens in complex sample backgrounds. These results serve as an exhibition for the existing pipelines and web-based interface of Pathosphere as well as the plug-in adaptability that allows for integration of newer NGS analytical software as it becomes available

    Functionally distinct high and low theta oscillations in the human hippocampus.

    Get PDF
    Based on rodent models, researchers have theorized that the hippocampus supports episodic memory and navigation via the theta oscillation, a ~4-10 Hz rhythm that coordinates brain-wide neural activity. However, recordings from humans have indicated that hippocampal theta oscillations are lower in frequency and less prevalent than in rodents, suggesting interspecies differences in theta\u27s function. To characterize human hippocampal theta, we examine the properties of theta oscillations throughout the anterior-posterior length of the hippocampus as neurosurgical subjects performed a virtual spatial navigation task. During virtual movement, we observe hippocampal oscillations at multiple frequencies from 2 to 14 Hz. The posterior hippocampus prominently displays oscillations at ~8-Hz and the precise frequency of these oscillations correlates with the speed of movement, implicating these signals in spatial navigation. We also observe slower ~3 Hz oscillations, but these signals are more prevalent in the anterior hippocampus and their frequency does not vary with movement speed. Our results converge with recent findings to suggest an updated view of human hippocampal electrophysiology. Rather than one hippocampal theta oscillation with a single general role, high- and low-frequency theta oscillations, respectively, may reflect spatial and non-spatial cognitive processes

    A Systematic Review of Re-Identification Attacks on Health Data

    Get PDF
    Privacy legislation in most jurisdictions allows the disclosure of health data for secondary purposes without patient consent if it is de-identified. Some recent articles in the medical, legal, and computer science literature have argued that de-identification methods do not provide sufficient protection because they are easy to reverse. Should this be the case, it would have significant and important implications on how health information is disclosed, including: (a) potentially limiting its availability for secondary purposes such as research, and (b) resulting in more identifiable health information being disclosed. Our objectives in this systematic review were to: (a) characterize known re-identification attacks on health data and contrast that to re-identification attacks on other kinds of data, (b) compute the overall proportion of records that have been correctly re-identified in these attacks, and (c) assess whether these demonstrate weaknesses in current de-identification methods.Searches were conducted in IEEE Xplore, ACM Digital Library, and PubMed. After screening, fourteen eligible articles representing distinct attacks were identified. On average, approximately a quarter of the records were re-identified across all studies (0.26 with 95% CI 0.046-0.478) and 0.34 for attacks on health data (95% CI 0-0.744). There was considerable uncertainty around the proportions as evidenced by the wide confidence intervals, and the mean proportion of records re-identified was sensitive to unpublished studies. Two of fourteen attacks were performed with data that was de-identified using existing standards. Only one of these attacks was on health data, which resulted in a success rate of 0.00013.The current evidence shows a high re-identification rate but is dominated by small-scale studies on data that was not de-identified according to existing standards. This evidence is insufficient to draw conclusions about the efficacy of de-identification methods

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    Get PDF
    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore