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ARTICLE

Functionally distinct high and low theta oscillations
in the human hippocampus
Abhinav Goyal1, Jonathan Miller2, Salman E. Qasim2, Andrew J. Watrous3, Honghui Zhang2, Joel M. Stein 4,

Cory S. Inman5, Robert E. Gross5, Jon T. Willie5, Bradley Lega6, Jui-Jui Lin 6, Ashwini Sharan7,8,

Chengyuan Wu7, Michael R. Sperling8,9, Sameer A. Sheth10, Guy M. McKhann11, Elliot H. Smith12,

Catherine Schevon13 & Joshua Jacobs 2✉

Based on rodent models, researchers have theorized that the hippocampus supports episodic

memory and navigation via the theta oscillation, a ~4–10 Hz rhythm that coordinates brain-

wide neural activity. However, recordings from humans have indicated that hippocampal

theta oscillations are lower in frequency and less prevalent than in rodents, suggesting

interspecies differences in theta’s function. To characterize human hippocampal theta, we

examine the properties of theta oscillations throughout the anterior–posterior length of the

hippocampus as neurosurgical subjects performed a virtual spatial navigation task. During

virtual movement, we observe hippocampal oscillations at multiple frequencies from 2 to

14 Hz. The posterior hippocampus prominently displays oscillations at ~8-Hz and the precise

frequency of these oscillations correlates with the speed of movement, implicating these

signals in spatial navigation. We also observe slower ~3 Hz oscillations, but these signals are

more prevalent in the anterior hippocampus and their frequency does not vary with move-

ment speed. Our results converge with recent findings to suggest an updated view of human

hippocampal electrophysiology. Rather than one hippocampal theta oscillation with a single

general role, high- and low-frequency theta oscillations, respectively, may reflect spatial and

non-spatial cognitive processes.
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The theta oscillation is a large-scale network rhythm that
appears at ~4–10 Hz in rodents and is hypothesized to play
a fundamental role in mammalian spatial navigation and

memory1. However, in humans, there is mixed evidence regard-
ing the relevance and properties of hippocampal theta. Some
studies in humans show hippocampal oscillations at 1–5 Hz that
have similar functional properties as the theta oscillations seen in
rodents2–6. There is also evidence that human movement-related
hippocampal theta oscillations vary substantially in frequency
according to whether a subject is in a physical or virtual envir-
onment7–10. Together, these studies and others have been inter-
preted to suggest that the human hippocampus does show a
signal analogous to theta oscillations observed in rodents, but that
this oscillation is more variable and slower in frequency6. These
apparent discrepancies in the frequency of theta between species
and behaviors shed doubt on the notion that theta exists as a
single general oscillatory phenomenon that coordinates brain-
wide neural activity consistently across species and tasks.

Our study aimed to resolve these discrepancies by character-
izing the properties of human hippocampal oscillations in spatial
cognition. We analyzed intracranial electroencephalographic
(iEEG) recordings from the hippocampi of 14 neurosurgical
subjects performing a virtual-reality (VR) spatial navigation task,
in which subjects were asked to remember the location of an
object as they were moved along a linear track (Fig. 1). A distinct
feature of our experimental design compared with previous work
is that our task randomly varied the subjects’ movement speed
along the virtual track. This design encouraged subjects to con-
tinually attend to their spatial location throughout movement,
because a nonspatial strategy based on remembering the time
delay to each object would not be viable due to speed changes
within trials. We hypothesized that this feature of our task would
more clearly elicit human hippocampal oscillations specifically
related to navigation. In addition, we recorded signals at various
positions along the anterior–posterior (AP) axis of the hippo-
campus, including sites located considerably more posterior than
those seen in previous work of this type, which allowed us to
probe the anatomical organization of these oscillations.

Given the anatomical differences in the hippocampus between
rodents and humans11, in this paper we test the hypothesis that
understanding the spatial organization of human theta could help
explain the apparent interspecies differences that have been
reported previously. Here, we analyze the spectral and functional

features of human hippocampal oscillations and test their con-
sistency along the length of the hippocampus. In contrast to
earlier work that generally emphasized a single theta oscillation
for a given behavior, we instead find that the hippocampus
showed multiple oscillations at distinct frequencies (often at
~3 Hz and ~8 Hz), even in a single subject. Further, ~8-Hz
oscillations in the posterior (but not anterior) hippocampus
often correlates with spatial processing. By demonstrating
multiple patterns of hippocampal oscillations with different
anatomical and functional properties, our findings suggest that
human hippocampal oscillations at different frequencies are
generated by separate anatomical networks to support distinct
functions.

Results
Task description. Fourteen neurosurgical subjects (eight males
and six females, age range 23–49) performed our virtual-reality
(VR) spatial memory task, as we recorded neural activity from
iEEG electrodes implanted in their hippocampi. The task12

required that subjects press a button to indicate when they were
located at the position of a specified hidden object as they were
moved at a randomly varying speed in one direction along a linear
track (Fig. 1). Overall, subjects performed the task well,
responding accurately (error distance ≤ 11.5 VR units; see Meth-
ods) on 84% of trials. We performed spectral analyses of the iEEG
signals during movement phases of the task for all hippocampal
recording sites and used the MODAL oscillation-detection pro-
cedure13 to identify narrowband oscillations (see Methods).
Overall, we observed hippocampal narrowband oscillations at
frequencies in the range of 2–14 Hz (Fig. 2a), consistent with
earlier findings3,5,14–16, with oscillations being most prevalent at
~3 Hz and ~8Hz. For convenience, we label the frequencies of the
oscillations in our data set as the low-theta (2–4 Hz) and high-
theta (4–14 Hz) bands, although we acknowledge that some other
studies have used the terms delta and alpha to refer to parts of
these bands.

Anatomical organization of hippocampal high and low theta.
We next examined how the characteristics of the oscillations we
identified varied with the location of the recording electrode along
the hippocampal A–P axis. Many previous studies of hippocampal
oscillations in rodents have focused on signals in the dorsal region,

Learning
Target: desk Target: deskPoints: 0 Points: 75

Recall

Possible object locations Possible speed change locations Stopping zone

0 VR-units 10 706050403020

a b

c

Fig. 1 Spatial memory task. a Task screen image during a learning trial, where the object is visible as the subject travels down the track. b Task image
during a recall trial, in which the object is invisible and the subject must recall the object location. c Task schematic, showing possible object and speed-
change locations.
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which is analogous to the posterior hippocampus in humans11, or
on signals that are consistent across the length of the hippo-
campus17. However, a different line of work in humans18–20 and
animals21–23 emphasized that there are substantial variations in
function for neural activity recorded at different positions along
the length of the hippocampus. This suggested to us that human
hippocampal oscillations at different A–P positions could have
distinct spectral and functional properties.

To examine the link between oscillation properties and
intrahippocampal location in humans, we measured the A–P

location of each hippocampal electrode in a subject-specific
manner. We labeled the location of each electrode by measuring
its relative position between the anterior and posterior extent of
that subject’s hippocampus (see Methods). In this scheme,
positions 0% and 100% correspond to electrodes at the anterior
and posterior tips of the hippocampus, respectively. As seen in
Fig. 2b, c, within individual subjects, we observed narrowband
oscillations at various frequencies. Individual electrodes displayed
oscillations at either one or two distinct frequency ranges during
the task—we refer to these electrodes as single oscillators and dual
oscillators, respectively (for example traces see Supplementary
Fig. 1).

Inspecting our data, we observed in many individuals that the
frequency of the oscillations at a given hippocampal electrode
correlated with its A–P location. These patterns resembled
the A–P frequency gradients found from electrophysiological
recordings from other brain areas24–27. Electrodes at posterior
sites often showed oscillations at ~8 Hz. More anterior sites
appeared to have oscillations at lower frequencies and more often
showed two distinct oscillations (Fig. 3c, d).

We verified these observations quantitatively by analyzing
oscillation mean frequencies across our complete data set.
Although individual subjects generally were implanted with only
a small number of hippocampal contacts, in aggregate our data
set sampled 80% of the A–P length of the hippocampus (Fig. 3a).
Every hippocampal electrode showed at least one narrowband
oscillation within 2–14 Hz (Fig. 3b). 57% (30 of 53) of electrodes
were single oscillators, which usually (93%) showed an oscillation
in the high-theta (4–14 Hz) band (Fig. 3c). The remaining 43%
(23 of 53) of electrodes were dual oscillators (Fig. 3d). In the
posterior hippocampus, 69% of electrodes were single oscillators;
whereas in the anterior hippocampus, 50% of electrodes were
single oscillators and 50% were dual oscillators (Fig. 3b).

These patterns suggested to us that there could be a systematic
relationship between the A–P position of a hippocampal
recording electrode and the characteristics of the oscillations it
recorded. Indeed, we found that A–P position alone was sufficient
to significantly predict whether an electrode was a single or dual
oscillator, with single oscillators being more prevalent in posterior
locations (logistic regression, p= 0.02; Fig. 3b). Among the high-
theta single oscillators, there was a trend for a gradient between
oscillation frequency and A–P position, such that the specific
high-theta frequency of an oscillation was greater for electrodes at
more posterior locations (r= 0.35, p= 0.06; Fig. 3c). This
frequency gradient was more clear in the left hippocampus than
the right (left: r= 0.54, p= 0.04; right: r= 0.14, p= 0.19). Dual
oscillators did not show a significant correlation between
frequency and location for either the low- or high-theta bands
(|r| < 0.2, p′s > 0.25; Fig. 3d). Together, these results indicate that
human hippocampal theta is not a single unitary phenomenon,
but that it instead shows a gradient in terms of its properties, with
more posterior regions often showing a rodent-like theta, by
exhibiting a single oscillation at a higher frequency. In contrast,
hippocampal theta oscillations from more anterior locations were
more likely to manifest either as two oscillations or as a single
slower oscillation.

Building off our earlier work showing the functional lateralization
of human theta oscillations28, here we went further to examine the
spectral and anatomical properties of theta oscillations related to
movement. We found that both left and right hemispheres
displayed low- and high-theta oscillations (29 left electrodes,
mean= 6.4 ± 0.5 Hz (mean ± SEM); 24 right electrodes, mean=
7.1 ± 0.5 Hz). Among the high-theta single oscillators, mean
frequencies were significantly faster on the right hemisphere than
the left (17 left electrodes; mean= 6.23Hz, 13 right electrodes;
mean= 8.12Hz; t34= 2.4, p= 0.02, unpaired t test). The high-theta
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Fig. 2 Power spectra of electrodes along the anterior–posterior axis of
the hippocampus. a The distribution of detected oscillations across all
hippocampal electrodes in our data set. b Rendering of Subject 2’s left
hippocampus (left) and the power spectra (right) for electrodes implanted
in this area. Shading in the power spectrum indicates detected narrowband
oscillations. c Rendering of Subject 12’s left hippocampus and power
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oscillations on dual oscillators did not differ in frequency between
the two hemispheres (t27= 0.45, p= 0.65, unpaired t test).

We wished to confirm that our results were not biased by
unbalanced electrode positioning across the hippocampus, either
between hemispheres or across the dorsal–ventral axis. To
analyze this, we compared the distributions of electrode locations
across left vs. right hemispheres and across hippocampal
subregions (see Supplementary Notes). There was not a
significant difference in the distribution of electrode positioning
between the left vs. right hemispheres (two-sample rank-sum test,
p= 0.2), and we did not find significant frequency variations
across subregions (one-way ANOVA; single oscillators: F40= 1.8,
p= 0.18; dual oscillators, F47= 0.24, p= 0.79). Taken together,
these results indicate that our findings of variations in the
properties of hippocampal oscillations along the A–P axis is not
an artifact of a difference in electrode positioning.

To better understand the phenomenon of dual-oscillator
electrodes, we examined the relationship between their lower-
and higher-theta oscillations. We first considered the possibility
that there was a link between the particular frequencies of the
oscillations that appeared at individual dual oscillators. This
could have been the case, for example, if one electrode that
showed two apparent oscillations was actually recording an
oscillation with a non-sinusoidal waveform29, and this caused the
power spectrum to show the oscillation as well as its harmonic.
However, there was no correlation between the frequencies of the
high and low oscillations at individual dual oscillators (p= 0.85,
permutation test), indicating that the faster oscillations at these

sites were not harmonics of the slower ones. In addition, we
compared the timing of the occurrence of the different
oscillations on dual oscillators and found a tendency for these
electrodes to measure oscillations at both bands simultaneously
(Wilcoxon signed-rank test, p= 0.03; see Supplementary Fig. 2A).
Together, these results indicate that signals at dual oscillators
reflect distinct oscillations with a moderate tendency to co-occur
in time. Finally, some subjects had multiple distantly spaced
electrodes along the A–P axis. This enabled us to test whether
oscillations measured at different A–P locations were temporally
related (i.e., through volume conduction). We conducted an
analysis of theta-phase synchrony separately for the simulta-
neously recorded electrode pairs that exhibited low- and high-
theta oscillations, and found that volume conduction did not
explain our findings (see Supplementary Notes; Supplementary
Fig. 3). Instead, we detected a pattern of characteristic phase lags
that indicated that the theta oscillations were traveling waves that
tended to propagate from sites with faster to slower oscillation
frequencies, consistent with coupled-oscillator models26,30,31.

Analysis of theta-bout duration. Earlier studies showed that
theta oscillations in both humans and monkeys appeared in
transient bouts14,32,33. These human theta bouts were shorter in
duration compared with rodent theta oscillations, which often
persisted for many seconds1. To compare our results with signals
in rodents, we measured the mean duration of continuous oscil-
latory cycles of theta signals from individual electrodes in the low-
and high-theta bands, for single- and dual-oscillator electrodes
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(Fig. 4). Here, prior to statistical analysis, we first averaged oscil-
latory signals that were simultaneously recorded from nearby
electrodes in a subject (see Methods).

Individual subjects showed a range of mean theta-bout
durations. The mean bout duration was longer for high- than
low-theta oscillations (2.73 vs. 1.37 cycles, respectively; t38= 12.0,
p < 10−13). Within the high-theta band, we observed longer theta
bouts at single than dual-oscillator electrodes (3.0 vs. 2.43 cycles,
respectively; t25= 6.0, p < 10−5). The relatively long duration of
high-theta in single oscillators makes it the closest human analog
to hippocampal theta in moving rodents; however, it is still
dramatically briefer than rodent theta, which can have bouts that
last many seconds1,32,34.

High-theta frequency correlates with movement speed. In
rodents, the instantaneous frequency of the hippocampal theta
oscillation correlates with the speed of running34. Further, in both
humans and rodents theta power correlates with speed5,23,34.
These results have been interpreted to indicate that theta oscil-
lations have a general role related to multiple aspects of spatial
cognition14,35,36.

Building off this work, we tested for correlations between
movement speed and theta frequency to specifically distinguish
the functional role for human hippocampal oscillations in spatial
processing. To do this, at each electrode we measured the precise
frequency of the oscillations in each of the three movement
epochs per trial, in which subjects were moved at a particular
fixed speed along the virtual track. Next, we subsampled the data
to randomly select only one movement epoch per trial (see
Methods). Finally, for each electrode, we computed the correla-
tion across epochs between the movement speed and the
oscillation frequency.

Many electrodes with high-theta oscillations showed positive
correlations between frequency and movement speed. Figure 5a, b
illustrates this pattern of results for five example electrodes. We
found that the mean correlation between movement speed and
oscillation frequency was significantly positive for high-theta
oscillations (Fig. 5c, right), both when this signal was observed on
single as well as dual oscillator electrodes (both p′s < 0.006). The
mean speed–frequency correlation was significantly larger for
single than dual high-theta oscillators (t36= 2.42, p= 0.02). This

effect was also statistically significant on the single-electrode level.
Of the 19 high-theta single oscillators, 13 (68%) showed a
significant (p < 0.05) speed–frequency correlation, which was
more than expected by chance (p < 10−5, binomial test). Similarly,
of 19 dual oscillators, 7 (37%) showed a significant high-theta
speed–frequency correlation (p < 10−5, binomial test).

In contrast to the high-theta band where we found robust
positive speed–frequency correlations, the low-theta band showed
a different pattern, where speed–frequency correlations were not
significantly greater than zero (p′s > 0.05; Fig. 5c, left). Similarly,
at the single-electrode level, of the 20 electrodes with low-theta
oscillations (including both single and dual oscillators), only 5
(25%) showed significant speed–frequency correlations, which is
significantly less than the proportion of electrodes with high-theta
oscillations that showed this effect (z-test, z= 2.4, p= 0.008).

Finally, given the multiple factors that correlated with theta’s
properties—movement speed, electrode location, and oscillation
frequency—we performed a multivariate analysis to disentangle
the interrelations between these factors. We used a two-way
ANOVA to establish how the presence of speed–frequency
correlations, averaged within subject, varied across region
(anterior/posterior), band (high/low theta), and their interaction
(Fig. 5d). For single oscillators, we found a significant interaction
effect (p= 0.03), but no significant main effects (A–P region: p=
0.09, frequency: p= 0.37), thus confirming our interpretation that
the prevalence of speed–frequency effects is significantly greater
for posteriorly located high-theta single-oscillator electrodes
(Fig. 5d). We performed a similar analysis for dual oscillators,
and found no significant main or interaction effects (all p′s >
0.05). This result indicates that high-theta oscillations at single
oscillators in the posterior hippocampus are more closely tied to
spatial processing. More broadly, this supports the view that high-
theta oscillations in the posterior hippocampus are related to the
theta oscillations that are commonly seen in rats during
movement.

Discussion
By recording along the length of the hippocampus from subjects
performing a virtual-reality spatial task, we identified multiple
patterns of hippocampal theta-band oscillations with separate
functional and anatomic properties. These findings suggest that
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human hippocampal theta oscillations are more than just a slower
and noisier analog of the single theta oscillation seen in rodents,
but that they instead exist in multiple forms. Specifically, we
identified high (~8 Hz) theta oscillations in the posterior hippo-
campus that varied their frequency with the speed of movement
during virtual navigation, similar to the theta oscillations seen in
rodents34. We also found that humans have slower (~3 Hz)
hippocampal theta oscillations with distinct functional and ana-
tomical properties. In conjunction with earlier work linking
human low theta to memory15,28,37, our results suggest that high-
and low-theta oscillations represent distinct functional network
states. In this way, our work supports the broader view that the
brain can exhibit distinct oscillatory states related to different
behaviors38. Further, because the prevalence of spatially relevant
single-oscillator electrodes differed along the A–P length of the
hippocampus, our findings provide electrophysiological evidence
for a functional gradient across the hippocampus. This is a sub-
stantial difference compared to rodents, which usually are
described as showing a single theta rhythm across the hippo-
campus (e.g., refs. 17,39; but see ref. 40).

Previous work on human hippocampal oscillations generally
emphasized that rhythms at ~1–5 Hz were more common (for

review, see ref. 6). Our study has several distinctive methodological
features that could explain why we observed a different pattern
compared to the earlier literature, including a greater prevalence of
hippocampal oscillations at faster frequencies. Although not all
studies report the intrahippocampal locations of recording elec-
trodes, it seems that they usually most extensively sampled ante-
rior areas of the hippocampus5,32. By contrast, we measured each
electrode’s A–P location and included greater electrode coverage
in middle and posterior sections of the hippocampus, which were
the regions that more specifically showed single high-theta oscil-
lations. This increased posterior hippocampal coverage is likely
the result of the use of stereotactic electroencephalographic
(sEEG) recording electrodes, which have recently become more
commonly used for clinical epilepsy mapping19.

An additional differentiating feature of our study was the
design of our behavioral task. Rather than allowing the subject to
control their own movement with a fixed top speed as in earlier
studies3,28,41, here the task automatically changed the subject’s
speed randomly, at random times. Given this unpredictable
movement, to perform the task well, subjects could not predict
their location based on timing and had to continually attend to
their view of the spatial environment. We hypothesize that this
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increased spatial attention increased the prevalence of neural
oscillations related to spatial processing. Accordingly, the rela-
tively large prevalence of high-theta oscillations that we observed
is consistent with the idea that this signal is particularly important
for spatial processing and thus functionally analogous to the Type
1 theta observed in rodents during movement42–46.

Having demonstrated that human slow and fast theta oscilla-
tions differ functionally and anatomically, our results raise the
question of the functional role of human low theta. One potential
explanation is that this signal, which we more often found in the
anterior hippocampus, is related to the Type 2 theta oscillations
that had been characterized previously in rodents. Consistent
with this interpretation, recent work showed that slower, Type 2
theta oscillations in rodents can be generated by a distinct net-
work of interneurons in the ventral hippocampus47. Type 2 theta
oscillations appear most strongly at ~4 Hz when rodents are
stationary and are traditionally associated with anxiety (e.g., 48,49;
but see ref. 50). In contrast, newer data from humans link oscil-
lations in this low-theta band to memory processing15,19,28.
Therefore, we suggest that the low-theta oscillations we observed
are indeed related to the rodent Type 2 theta, but that this signal
in humans has a broader functional role extending beyond
anxiety, perhaps including episodic memory and other types of
cognitive processes that more specifically involve the anterior
hippocampus51,52.

A notable feature of our findings is identifying many dual-
oscillator electrodes, which seem to reflect hippocampal networks
that are capable of exhibiting both low- and high-theta signals.
The existence of these dual oscillators may be important theo-
retically because the hippocampus in both rodents and humans is
known to exhibit theta-traveling waves that propagate in a
posterior-to-anterior (in humans) or dorsal-to-ventral (rodent)
direction17,31,53. One potential mechanism for hippocampal tra-
veling waves is a network of weakly coupled oscillators26,30. The
multiple oscillations shown by dual oscillators may reflect the
underlying independent oscillators that can lead to the generation
of traveling waves when the phase coupling between them is
increased. In particular, by showing that oscillatory phase pro-
gresses from locations with fast oscillators to those with slower
ones (Supplementary Fig. 3), our results are consistent with the
predictions of this model30 and earlier results26,31,54.

A key result from our work is showing that high-theta oscil-
lations appear in the human hippocampus during movement in
virtual reality. Two recent studies measured human hippocampal
oscillations from people walking in the physical world and
reported high-theta oscillations (e.g., 7,8; but see ref. 55). These
results were interpreted to suggest that virtual navigation relies on
a fundamentally different, lower-frequency oscillatory network
state compared with real-world navigation9. However, it should
be noted that at least one of the studies that previously showed
high-theta oscillations in real-world navigation showed examples
of these patterns at relatively posterior locations8. By demon-
strating that humans can show high theta during virtual reality,
our results suggest a different view. We propose that theta
oscillations at various frequencies can be prevalent in both virtual
and real spatial environments, with the dominant oscillatory
frequency being closer to the high-theta range during moments of
relatively high spatial demands. It is possible that the earlier VR
studies showed relatively less high-theta because their associated
tasks required less spatial attention. Overall, both our current
findings and this earlier literature lend support to the notion that
the human anterior and posterior hippocampi, respectively, are
implicated in low- and high-theta oscillations that each have
different behavioral properties11,22,56.

One reason why theta oscillations are thought to be important
functionally is that they coordinate large-scale brain-wide

networks, including synchronizing cortical–hippocampal inter-
actions57. Therefore, given that we showed that the human hip-
pocampus exhibits two separate theta oscillations in a single task,
an important area of future work will be to understand the
potential relation of each of these signals to brain-wide neocor-
tical dynamics58,59. In particular, it is notable that the posterior-
to-anterior fast-to-slow oscillatory gradient that we observed in
the hippocampus seems to match the direction of the frequency
gradient that has also been found in the neocortex25–27,52,60. In
light of this frequency-wise correspondence between the hippo-
campal and neocortical oscillations, we hypothesize that there
could also be a functional relation between these oscillations.
Specifically, one possibility is that there could be a functional link
between so-called alpha rhythms in the posterior neocortex and
high-theta oscillations in the posterior hippocampus. Supporting
this idea, it is notable that we found a correlation between high-
theta frequency and movement speed, because it suggests that this
oscillation could relate to the kinds of visuospatial processes that
are commonly associated with occipital alpha oscillations61–65.
Consistent with this view, recent work on cortical idling
demonstrated a potential link between hippocampal and occipital
oscillations by showing that 8–12-Hz power in both regions
increased with eye closure66. Furthermore, new work has iden-
tified molecular similarities between the anterior hippocampus
and frontal cortical regions, and between the posterior hippo-
campus and occipital cortical regions56. In light of these con-
vergences, it seems promising for future studies to probe links
between hippocampal high-theta and visual alpha oscillations.

More broadly, our finding that different theta frequencies are
preferentially associated with anterior and posterior processes is
notable given the predominant involvement of the frontal and
occipital lobes in high-level and sensory processing, respectively.
Along with the different functional correlations we found for
low- and high-theta frequencies, these results are consistent
with the idea that oscillations at varying frequencies reflect dis-
tinct hippocampal–neocortical interactions related to different
functions38,59. This multiplicity of human theta patterns—across
high and low frequencies—could be a critical component in
allowing the human hippocampus to coordinate a diverse set of
brain-wide neural assemblies to support various types of beha-
viors, including spatial navigation, memory, and other cognitive
processes.

Methods
Subjects. Fourteen subjects (eight males and six females, age range 23–49) at four
hospitals (Thomas Jefferson University Hospital, Columbia University Medical
Center, University of Texas Southwestern Medical Center, and Emory University
Hospital) undergoing treatment for medication-resistant epilepsy participated in
our study. Neurosurgeons implanted these subjects with clinical depth electrodes
for functional mapping and the localization of seizure foci. Implantation sites were
determined solely by clinical teams, though electrodes were often placed in medial
temporal lobe regions that are of interest experimentally. Research protocols were
approved by the institutional review boards at each participating hospital, and
informed consent was obtained from all subjects. Previous work utilizing scalp EEG
recordings67 has reported that theta oscillatory activity varied with age and sex.
However, here we did not find a significant relation between theta frequency and
age (r=−0.09, p= 0.90) or sex (t11= 0.97, p= 0.35, unpaired t test). This dif-
ference suggests that the hippocampal oscillations that are the focus of our study
differ from the neocortical signals measured with scalp EEG.

Task. The subjects in our study performed a new spatial memory task, which we
specifically designed to encourage subjects to pay attention to their location in the
virtual environment by varying their movement speed randomly. This distinctive
design prevented subjects from utilizing a timing-based strategy to perform the
task, such as by remembering each object’s latency since the beginning of move-
ment. We hypothesized that this task design had the potential to elicit more reliable
hippocampal activity related to spatial processing than previous studies of human
navigation12. Because the subjects in our study were undergoing continuous
monitoring for epileptiform activity, we were limited to studying virtual navigation,
as subjects remained in their hospital bed throughout testing.
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In the task, subjects were moved along the length of a virtual-reality (VR) track,
which we defined as having a length of 70 virtual-reality units. The ground was
textured to mimic asphalt, and the track was surrounded by stone walls (see Fig. 1).
On each trial, subjects were placed at the beginning of the track, and they began
each trial by pressing a button on a game controller. Next, a four-second-long
countdown timer appeared. After the countdown, subjects were moved forward
along the track. Within each third of the track, subjects were moved at a constant
speed, which was chosen randomly from a uniform distribution between 2 and
12 VR units/second. Locations where speed changes began are indicated by the
light gray shading in the schematic shown in Fig. 1c. When speed changes
occurred, acceleration occurred gradually over the course of one second to avoid
jarring transitions.

During movement, the subjects’ goal was to mark the location of a hidden object.
The first two times that the subject traveled down the track, the object’s location was
visible (Fig. 1a). On subsequent trials, the object was invisible, and subjects were
instructed to press the button on the controller when they believed they were at the
correct location (Fig. 1b). The closer the subject pressed the button to the correct
location, the more points they received (as indicated in the top right of the display),
thus encouraging careful attention to current location in the environment. Subjects
were also required to press the button when they approached the end of the track
where the ground was colored red to ensure that they were attentive during the trial.
Possible object locations are indicated by the dark gray shading in Fig. 1c.

Each trial consisted of the subject traveling a single time down the track, either
encoding or retrieving object location. Within each trial, the task would
automatically change the subject’s speed at each of two possible speed-change
regions (Fig. 1c), such that the subject’s path down the track consisted of three
constant speed regions. The focus of this study was to analyze human hippocampal
correlates of movement, rather than memory or task performance. Thus, we
analyzed all time points while subjects were in motion, regardless of performance,
including both encoding and retrieval trials. We classified correct trials as trials
where subjects had a response–object error distance of less than 11.5 VR units. This
value represents the average error that subjects would display if they responded at
the midpoint of the track each time12.

Electrophysiology. We recorded subjects’ intracranial electroencephalographic
(iEEG) data from implanted depth electrodes via the clinical or research recording
systems present at the participating hospitals (Nihon Kohden; XLTEK; Neuralynx;
Blackrock). Data were recorded at a sampling rate of either 1000 or 2000 Hz. iEEG
signals were initially referenced to common intracranial or scalp contacts, and were
subsequently re-referenced using an anatomically weighted referencing scheme
prior to analysis. Data were notch filtered at 60 Hz using a zero-phase-distortion
Butterworth filter to remove line noise prior to subsequent analyses. iEEG
recordings were aligned to the behavioral task laptop via synchronization pulses
sent to the recording system.

Electrode localization. Our data analyses were designed to test how the functional
and electrophysiological properties of human theta oscillations varied along the
hippocampal A–P axis. To study electrode’s anatomical features, we localized depth
electrodes for each subject using an established semi-automated image processing
pipeline68. To delineate the hippocampus, we applied the Automatic Segmentation
of Hippocampal Subfields multi atlas segmentation method to pre-implantation
high-resolution hippocampal coronal 3T T2-weighted and whole-brain 3D T1-
weighted scans. Electrode contact coordinates derived from post-implantation CT
scans were then co-registered to the segmented MRI scans using Advanced Nor-
malization Tools69, and anatomic locations were automatically generated. A neu-
roradiologist reviewed and confirmed contact locations based on the co-registered
source images. Electrodes were assigned normalized locations along the hippo-
campal axis by determining the coronal slice containing the center of the contact
and measuring relative to the first and last MRI slice containing the hippocampus.
For specific subjects, a neuroradiologist generated transparent 3D surface render-
ings of the subject's hippocampal segmentation and the corresponding co-
registered electrode contacts. Here, we only analyzed electrodes located within the
hippocampal formation (CA1, CA2, subiculum, and dentate gyrus). For the
majority of our analyses, we analyzed electrode location as a continuous variable
along the hippocampal A–P axis; however, when it was more convenient to refer to
anterior and posterior labeling, we utilized 40% as the division point, based on the
midpoint of our coverage, to allow adequate statistical power for data analyses. If
two or more neighboring electrodes in one subject were located in nearby slices
(<10% of the hippocampal A–P axis distance away from each other), and exhibited
a similar oscillation frequency (within 2 Hz) during movement, all but one of these
electrodes were dropped for all analyses.

Spectral analysis. Due to the variability of human neuronal oscillations15,31, our
analyses examined the spectral features of the oscillations at each electrode at a
high resolution to identify frequency bands that are customized for each subject
and electrode26,70. This approach differs from the one used in our earlier work,
which utilized fixed frequency bands across subjects. To achieve this high-
frequency resolution, we followed the MODAL algorithm13. The first step of
this algorithm is to exclude epochs of the data that could potentially result

from epileptic activity71. Then, the algorithm defines relevant frequency bands as
those frequencies where the measured oscillatory power exceeds one standard
deviation above the background 1/f spectrum. This criterion ensures that our
results were not driven by spurious background noise information. MODAL then
computes the instantaneous frequency and phase for each frequency band, but only
when the local power spectrum (computed in 10 s, nonoverlapping windows)
indicated a local power peak at that band.

When examining frequency band characteristics across the data, we noticed that
every electrode exhibited either one or two distinct oscillations at frequency bands
between 2 and 14 Hz. We called electrodes that only exhibited a single oscillation
throughout the task single oscillators while we called those that exhibited two
oscillations dual oscillators. For an electrode to be designated as a dual oscillator,
the edges of the two frequency bands detected by MODAL had to differ by at least
0.5 Hz. For analyses where we specifically report low-theta and high-theta results
across electrodes, we classified low-theta oscillations as those <4 Hz, and high-theta
oscillations as those >=4 Hz. We defined an oscillatory bout as sequences of
consecutive millisecond time points of any length where at least one oscillation was
present.

We performed a series of analyses comparing how these detected oscillations
related to features of the subject’s movement. Each trial within the task consisted of
three intervals that each had a constant speed of movement (Fig. 1). We computed
the particular oscillation frequency for each movement interval by first using
MODAL to measure the instantaneous frequency of the iEEG signal at each
timepoint throughout the interval. Then, we computed a histogram of the
distribution of frequencies (0.1-Hz bins), identified the single most often occurring
frequency (i.e., the mode), and used this value to summarize the oscillatory activity
in that interval. For our analysis of speed–frequency correlations (Fig. 5a–c), we
randomly chose only a single-speed period from each trial to analyze to ensure that
all speed–frequency correlations arose from independent observations. For the
analyses of oscillatory bouts (Fig. 4) and frequency–speed correlations (Fig. 5), we
wished to ensure that our results were not influenced by subjects who had multiple
electrodes at similar A–P locations. Therefore, we performed a group-level analysis
where each subject contributed only a single mean value per frequency/region, for
each of the low-anterior, low-posterior, high-anterior, and high-posterior
categories. All data analysis was completed in MATLAB 2017b.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated during and analyzed during this study are available from the
corresponding author on reasonable request. The source data underlying Figs. 3b and 5d
are provided as a Source Data file.

Code availability
The code used to analyze data during the current study are available from the
corresponding author on reasonable request.
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