261 research outputs found

    IS1-related large-scale deletion of chromosomal regions harbouring the oxygen-insensitive nitroreductase gene nfsB causes nitrofurantoin heteroresistance in Escherichia coli

    Get PDF
    Nitrofurantoin is a broad-spectrum first-line antimicrobial used for managing uncomplicated urinary tract infection (UTI). Loss-of-function mutations in chromosomal genes nfsA, nfsB and ribE of Escherichia coli are known to reduce nitrofurantoin susceptibility. Here, we report the discovery of nitrofurantoin heteroresistance in E. coli clinical isolates and a novel genetic mechanism associated with this phenomenon. Subpopulations with lower nitrofurantoin susceptibility than major populations (hereafter, nitrofurantoin-resistant subpopulations) in two E. coli blood isolates (previously whole-genome sequenced) were identified using population analysis profiling. Each isolate was known to have a loss-of-function mutation in nfsA. From each isolate, four nitrofurantoin-resistant isolates were derived at a nitrofurantoin concentration of 32 mg l-1, and a comparator isolate was obtained without any nitrofurantoin exposure. Genomes of derived isolates were sequenced on Illumina and Nanopore MinION systems. Genetic variation between isolates was determined based on genome assemblies and read mapping. Nitrofurantoin minimum inhibitory concentrations (MICs) of both blood isolates were 64 mg l-1, with MICs of major nitrofurantoin-susceptible populations varying from 4 to 8 mg l-1. Two to 99 c.f.u. per million demonstrated growth at the nitrofurantoin concentration of 32 mg l-1, which is distinct from that of a homogeneously susceptible or resistant isolate. Derived nitrofurantoin-resistant isolates had 11-66 kb deletions in chromosomal regions harbouring nfsB, and all deletions were immediately adjacent to IS1-family insertion sequences. Our findings demonstrate that the IS1-associated large-scale genetic deletion is a hitherto unrecognized mechanism of nitrofurantoin heteroresistance and could compromise UTI management. Further, frequencies of resistant subpopulations from nitrofurantoin-heteroresistant isolates may challenge conventional nitrofurantoin susceptibility testing in clinical settings

    Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study.

    Get PDF
    Antimicrobial resistance (AMR) poses a threat to public health. Clinical microbiology laboratories typically rely on culturing bacteria for antimicrobial-susceptibility testing (AST). As the implementation costs and technical barriers fall, whole-genome sequencing (WGS) has emerged as a 'one-stop' test for epidemiological and predictive AST results. Few published comparisons exist for the myriad analytical pipelines used for predicting AMR. To address this, we performed an inter-laboratory study providing sets of participating researchers with identical short-read WGS data from clinical isolates, allowing us to assess the reproducibility of the bioinformatic prediction of AMR between participants, and identify problem cases and factors that lead to discordant results. We produced ten WGS datasets of varying quality from cultured carbapenem-resistant organisms obtained from clinical samples sequenced on either an Illumina NextSeq or HiSeq instrument. Nine participating teams ('participants') were provided these sequence data without any other contextual information. Each participant used their choice of pipeline to determine the species, the presence of resistance-associated genes, and to predict susceptibility or resistance to amikacin, gentamicin, ciprofloxacin and cefotaxime. We found participants predicted different numbers of AMR-associated genes and different gene variants from the same clinical samples. The quality of the sequence data, choice of bioinformatic pipeline and interpretation of the results all contributed to discordance between participants. Although much of the inaccurate gene variant annotation did not affect genotypic resistance predictions, we observed low specificity when compared to phenotypic AST results, but this improved in samples with higher read depths. Had the results been used to predict AST and guide treatment, a different antibiotic would have been recommended for each isolate by at least one participant. These challenges, at the final analytical stage of using WGS to predict AMR, suggest the need for refinements when using this technology in clinical settings. Comprehensive public resistance sequence databases, full recommendations on sequence data quality and standardization in the comparisons between genotype and resistance phenotypes will all play a fundamental role in the successful implementation of AST prediction using WGS in clinical microbiology laboratories

    Carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae in HIV-infected children in Zimbabwe.

    Get PDF
    BACKGROUND: Antimicrobial resistance is an emerging global health issue. Data on the epidemiology of multidrug-resistant organisms are scarce for Africa, especially in HIV-infected individuals who often have frequent contact with healthcare. We investigated the prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) carriage in stool among HIV-infected children attending an HIV outpatient department in Harare, Zimbabwe. METHODS: We recruited children who were stable on antiretroviral therapy (ART) attending a HIV clinic from August 2014 to June 2015. Information was collected on antibiotic use and hospitalization. Stool was tested for ESBL-E through combination disc diffusion. API20E identification and antimicrobial susceptibility was performed on the positive samples followed by whole genome sequencing. RESULTS: Stool was collected from 175/202 (86.6 %) children. Median age was 11 [inter-quartile range (IQR) 9-12] years. Median time on ART was 4.6 years (IQR 2.4-6.4). ESBL-Es were found in 24/175 samples (13.7 %); 50 % of all ESBL-Es were resistant to amoxicillin-clavulanate, 100 % to co-trimoxazole, 45.8 % to chloramphenicol, 91.6 % to ceftriaxone, 20.8 % to gentamicin and 62.5 % to ciprofloxacin. ESBL-Es variously encoded CTX-M, OXA, TEM and SHV enzymes. The odds of ESBL-E carriage were 8.5 times (95 % CI 2.2-32.3) higher in those on ART for less than one year (versus longer) and 8.5 times (95 % CI 1.1-32.3) higher in those recently hospitalized for a chest infection. CONCLUSION: We found a 13.7 % prevalence of ESBL-E carriage in a population where ESBL-E carriage has not been described previously. Antimicrobial resistance (AMR) in Africa merits further study, particularly given the high HIV prevalence and limited diagnostic and therapeutic options available

    Complete Genome Sequence of a Colistin-Resistant Uropathogenic Escherichia coli Sequence Type 131 fimH22 Strain Harboring mcr-1 on an IncHI2 Plasmid, Isolated in Riyadh, Saudi Arabia

    Get PDF
    ABSTRACT We report the complete genome sequence of a colistin-resistant strain of uropathogenic Escherichia coli, isolated in January 2013 at King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. The isolate (named SA186) was sequence type 131 (ST131) and belonged to serotype O25b-H4 and clade B (fimH22).</jats:p

    A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase

    Get PDF
    Synthetic genetic systems share resources with the host, including machinery for transcription and translation. Phage RNA polymerases (RNAPs) decouple transcription from the host and generate high expression. However, they can exhibit toxicity and lack accessory proteins (σ factors and activators) that enable switching between different promoters and modulation of activity. Here, we show that T7 RNAP (883 amino acids) can be divided into four fragments that have to be co‐expressed to function. The DNA‐binding loop is encoded in a C‐terminal 285‐aa ‘σ fragment’, and fragments with different specificity can direct the remaining 601‐aa ‘core fragment’ to different promoters. Using these parts, we have built a resource allocator that sets the core fragment concentration, which is then shared by multiple σ fragments. Adjusting the concentration of the core fragment sets the maximum transcriptional capacity available to a synthetic system. Further, positive and negative regulation is implemented using a 67‐aa N‐terminal ‘α fragment’ and a null (inactivated) σ fragment, respectively. The α fragment can be fused to recombinant proteins to make promoters responsive to their levels. These parts provide a toolbox to allocate transcriptional resources via different schemes, which we demonstrate by building a system which adjusts promoter activity to compensate for the difference in copy number of two plasmids.United States. Office of Naval Research (N00014‐13‐1‐0074)National Institutes of Health (U.S.) (5R01GM095765)National Science Foundation (U.S.) (Synthetic Biology Engineering Research Center (SA5284‐11210))United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship (NDSEG) Program))Hertz Foundation (Fellowship

    A multi-species cluster of GES-5 carbapenemase producing Enterobacterales linked by a geographically disseminated plasmid

    Get PDF
    BACKGROUND: Early and accurate treatment of infections due to carbapenem-resistant organisms is facilitated by rapid diagnostics but rare resistance mechanisms can compromise detection. One year after a GES-5 carbapenemase-positive Klebsiella oxytoca infection was identified by whole genome sequencing (WGS) (later found to be part of a cluster of three cases), a cluster of 11 patients with GES-5-positive K. oxytoca was identified over 18 weeks in the same hospital. METHODS: Bacteria were identified by MALDI-TOF, antimicrobial susceptibility testing followed EUCAST guidelines. Ertapenem-resistant isolates were referred to Public Health England for characterization using PCR detection of GES, pulse-field gel electrophoresis (PFGE) and WGS for the second cluster. RESULTS: The identification of the first GES-5 K. oxytoca isolate was delayed, being identified on WGS. A GES-gene PCR informed the occurrence of the second cluster in real-time. In contrast to PFGE, WGS phylogenetic analysis refuted an epidemiological link between the two clusters; it also suggested a cascade of patient-to-patient transmission in the later cluster. A novel GES-5-encoding plasmid was present in K. oxytoca,E. coli and E. cloacae isolates from unlinked patients within the same hospital group and in human and wastewater isolates from three hospitals elsewhere in the UK. CONCLUSIONS: Genomic sequencing revolutionized the epidemiological understanding of the clusters, it also underlined the risk of covert plasmid propagation in healthcare settings and revealed the national distribution of the resistance-encoding plasmid. Sequencing results also informed and led to the ongoing use of enhanced diagnostic tests for detecting carbapenemases locally and nationally

    Genomic epidemiology of complex, multi-species, plasmid-borne blaKPC carbapenemase in Enterobacterales in the UK, 2009-2014

    Get PDF
    Carbapenem resistance in Enterobacterales is a public health threat. Klebsiella pneumoniae carbapenemase (encoded by alleles of the blaKPC family) is one of the most common transmissible carbapenem resistance mechanisms worldwide. The dissemination of blaKPC historically has been associated with distinct K. pneumoniae lineages (clonal group 258 [CG258]), a particular plasmid family (pKpQIL), and a composite transposon (Tn4401). In the United Kingdom, blaKPC has represented a large-scale, persistent management challenge for some hospitals, particularly in North West England. The dissemination of blaKPC has evolved to be polyclonal and polyspecies, but the genetic mechanisms underpinning this evolution have not been elucidated in detail; this study used short-read whole-genome sequencing of 604 blaKPC-positive isolates (Illumina) and long-read assembly (PacBio)/polishing (Illumina) of 21 isolates for characterization. We observed the dissemination of blaKPC (predominantly blaKPC-2; 573/604 [95%] isolates) across eight species and more than 100 known sequence types. Although there was some variation at the transposon level (mostly Tn4401a, 584/604 [97%] isolates; predominantly with ATTGA-ATTGA target site duplications, 465/604 [77%] isolates), blaKPC spread appears to have been supported by highly fluid, modular exchange of larger genetic segments among plasmid populations dominated by IncFIB (580/604 isolates), IncFII (545/604 isolates), and IncR (252/604 isolates) replicons. The subset of reconstructed plasmid sequences (21 isolates, 77 plasmids) also highlighted modular exchange among non-blaKPC and blaKPC plasmids and the common presence of multiple replicons within blaKPC plasmid structures (>60%). The substantial genomic plasticity observed has important implications for our understanding of the epidemiology of transmissible carbapenem resistance in Enterobacterales for the implementation of adequate surveillance approaches and for control

    Reconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in Escherichia coli

    Get PDF
    Resistance to amoxicillin-clavulanate, a widely used beta-lactam/beta-lactamase inhibitor combination antibiotic, is rising globally, and yet susceptibility testing remains challenging. To test whether whole-genome sequencing (WGS) could provide a more reliable assessment of susceptibility than traditional methods, we predicted resistance from WGS for 976 Escherichia coli bloodstream infection isolates from Oxfordshire, United Kingdom, comparing against phenotypes from the BD Phoenix (calibrated against EUCAST guidelines). A total of 339/976 (35%) isolates were amoxicillin-clavulanate resistant. Predictions based solely on beta-lactamase presence/absence performed poorly (sensitivity, 23% [78/339]) but improved when genetic features associated with penicillinase hyperproduction (e.g., promoter mutations and copy number estimates) were considered (sensitivity, 82% [277/339]; P < 0.0001). Most discrepancies occurred in isolates with MICs within ±1 doubling dilution of the breakpoint. We investigated two potential causes: the phenotypic reference and the binary resistant/susceptible classification. We performed reference standard, replicated phenotyping in a random stratified subsample of 261/976 (27%) isolates using agar dilution, following both EUCAST and CLSI guidelines, which use different clavulanate concentrations. As well as disagreeing with each other, neither agar dilution phenotype aligned perfectly with genetic features. A random-effects model investigating associations between genetic features and MICs showed that some genetic features had small, variable and additive effects, resulting in variable resistance classification. Using model fixed-effects to predict MICs for the non-agar dilution isolates, predicted MICs were in essential agreement (±1 doubling dilution) with observed (BD Phoenix) MICs for 691/715 (97%) isolates. This suggests amoxicillin-clavulanate resistance in E. coli is quantitative, rather than qualitative, explaining the poorly reproducible binary (resistant/susceptible) phenotypes and suboptimal concordance between different phenotypic methods and with WGS-based predictions
    corecore