45 research outputs found

    Structure and dielectric properties of electroactive tetraaniline grafted non-polar elastomers

    Get PDF
    Intrinsic modification of polybutadiene and block copolymer styrene–butadiene–styrene with the electrically conducting emeraldine salt of tetraaniline (TANI) via a three-step grafting method, is reported in this work. Whilst the TANI oligomer grafted at a similar rate to both polybutadiene and styrene–butadiene–styrene under the same conditions, the resulting elastomers exhibited vastly different properties. 1 mol% TANI-PB exhibited an increased relative permittivity of 5.9, and a high strain at break of 156%, whilst 25 mol% TANI-SBS demonstrated a relative permittivity of 6.2 and a strain at break of 186%. The difference in the behaviour of the two polymers was due to the compatibilisation of TANI by styrene in SBS through π-π stacking, which prevented the formation of a conducting TANI network in SBS at. Without the styrene group, TANI-PB formed a phase separated structure with high levels of TANI grafting. Overall, it was concluded that the polymer chain structure, the morphology of the modified elastomers, and the degree of grafting of TANI, had the greatest effect on the mechanical and dielectric properties of the resultant elastomers. This work paves the way for an alternative approach to the extrinsic incorporation of conducting groups into unsaturated elastomers, and demonstrates dielectric elastomers with enhanced electrical properties for use in actuation devices and energy harvesting applications

    Electrical dual-percolation in MWCNTs/SBS/PVDF based thermoplastic elastomer (TPE) composites and the effect of mechanical stretching

    Get PDF
    Dielectric thermoplastic elastomers (TPEs) offer a number of advantages over traditional dielectric elastomers or rubbers in terms of tailorable mechanical and electrical properties, higher mechanical strain, and ease of processing and shaping. Such a combination of properties has attracted increasing attention in flexible energy harvesting and storage applications. The combination of styrene–butadiene-styrene (SBS) and poly(vinylidene fluoride) (PVDF) has the potential to provide a combination of high elongation to break and increased relative permittivity, however the immiscibility between SBS and PVDF results in polymer blends with poor stretchability and processing properties. In this work, a dual percolated structure was created in a thermoplastic elastomer of SBS/PVDF (50/50 wt%), by coupling EVA as a compatibiliser for SBS/PVDF with multi-walled carbon nanotubes (MWCNTs) as a conductive filler that created an electrical percolation network. The elongation at break of SBS/PVDF was significantly enhanced by adding 20 wt% of EVA due to the reduced phase dimensions and enhanced interfacial adhesion. The addition of MWCNTs enabled the formation of a percolated network at 1 wt% in the SBS phase, followed by a second percolation at 3 wt% in both PVDF and SBS phases. The relative permittivity of the composite increased to 22.5 at 1 wt% MWCNT with a tan δ of 0.5, and further increased to 34.9 for a 2 wt% of MWCNT concentration while the tan δ remained constant. In-situ electrical testing for the SBS/PVDF thermoplastic elastomer under strain showed that, at 1 wt% MWCNT, the non-percolated PVDF islands acted as variable capacitors whose capacitance increased with degree of stretching. For the dual percolated structure formed at 3 wt% MWCNT, the capacitance and conductivity of the composites were unaffected up to 30% strain. The high relative permittivity and strains of over 100% means that the SBS/PVDF based thermoplastic elastomer is readily suitable for vibration control sensors, variable impedance devices, energy harvesters and artificial muscles and actuators

    Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites

    Get PDF
    The majority of polymers are electrical and thermal insulators. In order to create electrically active and thermally conductive polymers and composites, the hybrid-filler systems is an effective approach, i.e. combining different types of fillers with different dimensions, in order to facilitate the formation of interconnected conducting networks and to enhance the electrical, thermal, mechanical and processing properties synergistically. By tailoring polymer-filler interactions both thermodynamically and kinetically, the selective localisation of fillers in polymer blends and at the interface of co-continuous polymer blends can enhance the electrical conductivity at a low percolation threshold. Moreover, selective localisation of different filler types in different co-continuous phases can result in multiple functionalities, such as high electrical conductivity, thermal conductivity or electromagnetic interference shielding. In this review, we discuss the latest progress towards the development of electrically active and thermally conductive polymer composites, and highlight the technical challenges and future research directions

    Shape memory properties of polyethylene/ethylene vinyl acetate /carbon nanotube composites

    Get PDF
    The safe operation of electrical equipment relies on advanced polymer insulation to contain electrical pathways. Polymer sheath materials should be mechanically robust and chemically stable in order to protect the internal metal wiring from environmental attack. Polyethylene (PE) and ethylene vinyl acetate (EVA) have often been used as electrical cable jacket materials for electrical power industry. Partially crosslinked PE is able to shrink and wrap tightly around the metal wires upon stimulated by external heat, exhibiting shape memory behaviour. In this work, multiwalled carbon nanotubes (MWCNTs) were introduced to partially crosslinked linear medium density polyethylene (LMDPE) and EVA blend in order to enhance the shape memory performance at lower temperature by promoting the thermal transfer and antistatic properties of the polymer nanocomposite. The morphologies of the partially crosslinked and non-crosslinked composites are analysed. The MWCNTs preferentially resided in the EVA phase while the peroxide crosslinking process drastically altered the morphology and electrical properties. The addition of 3 wt% of MWCNTs resulted in a percolation transition and enhanced the alternating current (AC) conductivity by 10 orders of magnitude for non-crosslinked LMDPE/EVA and by 3 orders of magnitude for crosslinked LMDPE/EVA composites. LMDPE/EVA (80/20) containing 3 wt% MWCNTs possessed excellent shape recovery of 100% and shape fixing of 82%. The addition of MWCNTs can not only promote the shape memory efficiency of the polymer sheath material, but also introduce antistatic properties to avoid electrical shocking or sparking

    Challenges and Opportunities of Self-healing Polymers and Devices for Extreme and Hostile Environments

    Get PDF
    Engineering materials and devices can be damaged during their service life as a result of mechanical fatigue, punctures, electrical breakdown, and electrochemical corrosion. This damage can lead to unexpected failure during operation, which requires regular inspection, repair, and replacement of the products, resulting in additional energy consumption and cost. During operation in challenging, extreme, or harsh environments, such as those encountered in high or low temperature, nuclear, offshore, space, and deep mining environments, the robustness and stability of materials and devices are extremely important. Over recent decades, significant effort has been invested into improving the robustness and stability of materials through either structural design, the introduction of new chemistry, or improved manufacturing processes. Inspired by natural systems, the creation of self-healing materials has the potential to overcome these challenges and provide a route to achieve dynamic repair during service. Current research on self-healing polymers remains in its infancy, and self-healing behavior under harsh and extreme conditions is a particularly untapped area of research. Here, the self-healing mechanisms and performance of materials under a variety of harsh environments are discussed. An overview of polymer-based devices developed for a range of challenging environments is provided, along with areas for future research

    Dynamic polymer networks : a new avenue towards sustainable and advanced soft machines

    Get PDF
    While the fascinating field of soft machines has grown rapidly over the last two decades, the materials they are constructed from have remained largely unchanged during this time. Parallel activities have led to significant advances in the field of dynamic polymer networks, leading to the design of three‐dimensionally cross‐linked polymeric materials that are able to adapt and transform through stimuli induced bond exchange. Recent work has begun to merge these two fields of research by incorporating the stimuli‐responsive properties of dynamic polymer networks into soft machine components. These include dielectric elastomers, stretchable electrodes, nanogenerators, and energy storage devices. In this minireview, we outline recent progress made in this emerging research boundary and discuss future directions for the field

    Intrinsic tuning of poly (styrene-butadiene-styrene) (SBS) based self-healing dielectric elastomer actuators with enhanced electromechanical properties

    Get PDF
    The electromechanical properties of a thermoplastic styrene-butadiene-styrene (SBS) dielectric elastomer was intrinsically tuned by chemical grafting with polar organic groups. Methyl thioglycolate (MG) reacted with the butadiene block via a one-step thiol-ene ‘click’ reaction under UV at 25°C. The MG grafting ratio reached 98.5 mol% (with respect to the butadiene alkenes present) within 20 minutes and increased the relative permittivity to 11.4 at 103 Hz, with a low tan δ. The actuation strain of the MG grafted SBS dielectric elastomer actuator was ten times larger than the SBS-based actuator, and the actuation force was four times greater than SBS. The MG grafted SBS demonstrated an ability to achieve both mechanical and electrical self-healing. The electrical breakdown strength recovered to 15% of its original value, and the strength and elongation at break recovered by 25% and 21%, respectively, after three days. The self-healing behaviour was explained by the introduction of polar MG groups that reduce viscous loss and strain relaxation. The weak CH/π bonds through the partially charged (δ+) groups adjacent to the ester of MG and the δ- centre of styrene enable polymer chains to reunite and recover properties. Intrinsic tuning can therefore enhance the electromechanical properties of dielectric elastomers and provides new actuator materials with self-healing mechanical and dielectric properties

    Self-healing dielectric elastomers for damage-Tolerant actuation and energy harvesting

    Get PDF
    The actuation and energy-harvesting performance of dielectric elastomers are strongly related to their intrinsic electrical and mechanical properties. For future resilient smart transducers, a fast actuation response, efficient energy-harvesting performance, and mechanical robustness are key requirements. In this work, we demonstrate that poly(styrene-butadiene-styrene) (SBS) can be converted into a self-healing dielectric elastomer with high permittivity and low dielectric loss, which can be deformed to large mechanical strains; these are key requirements for actuation and energy-harvesting applications. Using a one-step click reaction at room temperature for 20 min, methyl-3-mercaptopropionate (M3M) was grafted to SBS and reached 95.2% of grafting ratios. The resultant M3M–SBS can be deformed to a high mechanical strain of 1000%, with a relative permittivity of εr = 7.5 and a low tan δ = 0.03. When used in a dielectric actuator, it can provide 9.2% strain at an electric field of 39.5 MV m–1 and can also generate an energy density of 11 mJ g–1 from energy harvesting. After being subjected to mechanical damage, the self-healed elastomer can recover 44% of its breakdown strength during energy harvesting. This work demonstrates a facile route to produce self-healing, high permittivity, and low dielectric loss elastomers for both actuation and energy harvesting, which is applicable to a wide range of diene elastomer systems

    Interface design for high energy density polymer nanocomposites

    Get PDF
    This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications. The methods employed for interface design in composite systems are described for a variety of filler types and morphologies, along with novel approaches employed to build hierarchical interfaces for multi-scale control of properties. Efforts to achieve a close control of interfacial properties and geometry are then described, which includes the creation of either flexible or rigid polymer interfaces, the use of liquid crystals and developing ceramic and carbon-based interfaces with tailored electrical properties. The impact of the variety of interface structures on composite polarization and energy storage capability are described, along with an overview of existing models to understand the polarization mechanisms and quantitatively assess the potential benefits of different structures for energy storage. The applications and properties of such interface-controlled materials are then explored, along with an overview of existing challenges and practical limitations. Finally, a summary and future perspectives are provided to highlight future directions of research in this growing and important area
    corecore