9 research outputs found

    Comparison of Physical-chemical and Mechanical Properties of Chlorapatite and Hydroxyapatite Plasma Sprayed Coatings

    Get PDF
    Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities.This study was carried out under a MNT ERA-Net Project named NANOMED. The authors gratefully thank the Midi-Pyrénées region (MNT ERA Net Midi-Pyrénées Région, NANOMED2 project) and the Institute National Polytechnique de Toulouse (BQR INPT 2011, BIOREVE project) for supporting this research work, especially the financial support for research carried out in the CIRIMAT and the LGP laboratories (France), and the Basque government and Tratamientos Superficiales Iontech, S.A. for their financial and technical support under the IG-2007/0000381 grant for the development of the LEPS device and deposition of the coatings carried out in Inasmet-Tecnalia. The French industrial collaborators (TEKNIMED SA and 2PS SA) were financed by the OSEO programs

    Control of mammary tumor differentiation by SKI-606 (bosutinib)

    Get PDF
    C-Src is infrequently mutated in human cancers but it mediates oncogenic signals of many activated growth factor receptors and thus remains a key target for cancer therapy. However, the broad function of Src in many cell types and processes requires evaluation of Src-targeted therapeutics within a normal developmental and immune-competent environment. In an effort to understand the appropriate clinical use of Src inhibitors, we tested an Src inhibitor, SKI-606 (bosutinib), in the MMTV-PyVmT transgenic mouse model of breast cancer. Tumor formation in this model is dependent on the presence of Src, but the necessity of Src kinase activity for tumor formation has not been determined. Furthermore, Src inhibitors have not been examined in an autochthonous tumor model that permits assessment of effects on different stages of tumor progression. Here we show that oral administration of SKI-606 inhibited the phosphorylation of Src in mammary tumors and caused a rapid decrease in the Ezh2 Polycomb group histone H3K27 methyltransferase and an increase in epithelial organization. SKI-606 prevented the appearance of palpable tumors in over 50% of the animals and stopped tumor growth in older animals with pre-existing tumors. These antitumor effects were accompanied by decreased cellular proliferation, altered tumor blood vessel organization and dramatically increased differentiation to lactational and epidermal cell fates. SKI-606 controls the development of mammary tumors by inducing differentiation

    Culture of cells of the osteoblast lineage

    No full text
    corecore