84 research outputs found

    Crystallography, magnetic susceptibility, heat capacity, and electrical resistivity of heavy fermion LiV2_2O4_4 single crystals grown using a self-flux technique

    Full text link
    Magnetically pure spinel compound LiV2O4{\rm LiV_2O_4} is a rare dd-electron heavy fermion. Measurements on single crystals are needed to clarify the mechanism for the heavy fermion behavior in the pure material. In addition, it is known that small concentrations (<1< 1 mol%) of magnetic defects in the structure strongly affect the properties, and measurements on single crystals containing magnetic defects would help to understand the latter behaviors. Herein, we report flux growth of LiV2O4{\rm LiV_2O_4} and preliminary measurements to help resolve these questions. The magnetic susceptibility of some as-grown crystals show a Curie-like upturn at low temperatures, showing the presence of magnetic defects within the spinel structure. The magnetic defects could be removed in some of the crystals by annealing them at 700 ^\circC\@. A very high specific heat coefficient γ\gamma = 450 mJ/(mol K2{^2}\@) was obtained at a temperature of 1.8 K for a crystal containing a magnetic defect concentration nndefect{\rm_{defect}} = 0.5 mol%. A crystal with nndefect{\rm _{defect}} = 0.01 mol% showed a residual resistivity ratio of 50.Comment: 6 pages, 7 figures, Title modifie

    Magnetic, Transport, and Thermal Properties of Single Crystals of the Layered Arsenide BaMn2As2

    Full text link
    Growth of BaMn2As2 crystals using both MnAs and Sn fluxes is reported. Room temperature crystallography, anisotropic isothermal magnetization M versus field H and magnetic susceptibility chi versus temperature T, electrical resistivity in the ab plane rho(T), and heat capacity C(T) measurements on the crystals were carried out. The tetragonal ThCr2Si2-type structure of BaMn2As2 is confirmed. After correction for traces of ferromagnetic MnAs impurity phase using M(H) isotherms, the inferred intrinsic chi(T) data of the crystals are anisotropic with chi_{ab}/chi_{c} \approx 7.5 at T = 2 K. The temperature dependences of the anisotropic chi data suggest that BaMn2As2 is a collinear antiferromagnet at room temperature with the easy axis along the c axis, and with an extrapolated Neel temperature T_N \sim 500 K. The rho(T) decreases with decreasing T below 310 K but then increases below \sim 50 K, suggesting that BaMn2As2 is a small band-gap semiconductor with an activation energy of order 0.03 eV. The C(T) data from 2 to 5 K are consistent with this insulating ground state, exhibiting a low temperature Sommerfeld coefficient gamma = 0.0(4) mJ/mol K^2. The Debye temperature is determined from these data to be theta_D = 246(4) K. BaMn2As2 is a potential parent compound for ThCr2Si2-type superconductors.Comment: 7 pages, 6 figures; v2: typos corrected, additional data and discussion, accepted for publication in Phys. Rev.

    Single crystal growth and physical properties of the layered arsenide BaRh_2As_2

    Full text link
    Single crystals of BaRh_2As_2 have been synthesized from a Pb flux. We present the room temperature crystal structure, single crystal x-ray diffraction measurements as a function of temperature T, anisotropic magnetic susceptibility \chi versus T, electrical resistivity in the ab-plane \rho versus T, Hall coefficient versus T and magnetic field H, and heat capacity C versus T measurements on the crystals. The single crystal structure determination confirms that BaRh_2As_2 forms in the tetragonal ThCr_2Si_2 type structure (space group I4/mmm) with lattice parameters a = b = 4.0564(6)\AA and c = 12.797(4) \AA. Band structure calculations show that BaRh_2As_2 should be metallic with a small density of states at the Fermi energy N(E_ F) = 3.49 states/eV f.u. (where f.u. \equiv formula unit) for both spin directions. \rho(T) data in the ab-plane confirm that the material is indeed metallic with a residual resistivity \rho(2K) = 29 \mu \Omega cm, and with a residual resistivity ratio \rho(310K)/\rho(2K) = 5.3. The observed \chi(T) is small (\sim 10^{-5} cm^3/mol) and weakly anisotropic with \chi_{ab}/\chi_ c \approx 2. The C(T) data indicate a small density of states at the Fermi energy with the low temperature Sommerfeld coefficient \gamma = 4.7(9) mJ/mol K^2. There are no indications of superconductivity, spin density wave, or structural transitions between 2K and 300K. We compare the calculated density of states versus energy of BaRh_2As_2 with that of BaFe_2As_2.Comment: Accepted for publication in Phys. Rev.

    The Flame Emission of Indium from a Pyrotechnical View

    Get PDF
    Until today, all blue‐colored light‐generating pyrotechnics are still based on copper and a halogen‐source providing the blue‐emitting species copper(I) chloride, copper(I) bromide or copper(I) iodide. The use of indium as a potential halogen‐free blue light emitter in modern pyrotechnics is described. Therefore, metallic indium was introduced as both fuel and colorant in various pyrotechnical formulations including guanidine nitrate or potassium nitrate as oxidizing agent as well as magnesium, hexamethylentetramine and 5‐amino‐1H‐tetrazole as fuel. The effect of incandescence was examined by applying different magnesium contents within the mixtures. Emission spectra and occurring emission lines of indium‐based pyrotechnical compositions were recorded and evaluated for the first time. Since the expected blue flame color could not be completely achieved, the emission of indium was discussed from an academic point of view

    Base-catalyzed condensation of cyclopentadiene derivatives. Synthesis of fulvalene analogues: strong proaromatic electron acceptors

    Get PDF
    A series of proaromatic electron acceptors derived from fulvenes were synthesized from tetrachlorocyclopentadiene and previously unknown 1,4-dicyano- and 1,4-dialkoxycarbonyl-2,3-dimethoxy cyclopentadienes. Two reversible one-electron reductions steps observed for fulvalenes coalesce into one two-electron reduction step upon increasing the length of the conjugating bridge

    User authentication in the public area of academic libraries in North Carolina

    Get PDF
    The clash of principles between protecting privacy and protecting security can create an impasse between libraries, campus IT departments, and academic administration over authentication issues with the public area PCs in the library. This research takes an in-depth look at the state of authentication practices within a specific region (i.e. all the academic libraries in North Carolina) in an attempt to create a profile of those libraries that choose to authenticate or not. The researchers reviewed an extensive amount of data to identify the factors involved with this decision

    Addition of Amines to a Carbonyl Ligand: Syntheses, Characterization, and Reactivities of Iridium(III) Porphyrin Carbamoyl Complexes

    Get PDF
    Treatment of (carbonyl)chloro(meso-tetra-p-tolylporphyrinato)iridium(III), (TTP)Ir(CO)Cl (1), with excess primary amines at 23 °C in the presence of Na2CO3 produces the trans-amine-coordinated iridium carbamoyl complexes (TTP)Ir(NH2R)[C(O)NHR] (R = Bn (2a), n-Bu (2b), i-Pr (2c), t-Bu (2d)) with isolated yields up to 94%. The trans-amine ligand is labile and can be replaced with quinuclidine (1-azabicyclo[2.2.2]octane, ABCO), 1-methylimidazole (1-MeIm), triethyl phosphite (P(OEt)3), and dimethylphenylphosphine (PMe2Ph) at 23 °C to afford the hexacoordinated carbamoyl complexes (TTP)Ir(L)[C(O)NHR] (for R = Bn: L = ABCO (3a), 1-MeIm (4a), P(OEt)3 (5a), PMe2Ph (6a)). On the basis of ligand displacement reactions and equilibrium studies, ligand binding strengths to the iridium metal center were found to decrease in the order PMe2Ph \u3e P(OEt)3 \u3e 1-MeIm \u3e ABCO \u3e BnNH2 ≫ Et3N, PCy3. The carbamoyl complexes (TTP)Ir(L)[C(O)NHR] (L = RNH2 (2a,b), 1-MeIm (4a)) undergo protonolysis with HBF4 to give the cationic carbonyl complexes [(TTP)Ir(NH2R)(CO)]BF4 (7a,b) and [(TTP)Ir(1-MeIm)(CO)]BF4 (8), respectively. In contrast, the carbamoyl complexes (TTP)Ir(L)[C(O)NHR] (L = P(OEt)3 (5a), PMe2Ph (6a,c)) reacted with HBF4 to afford the complexes [(TTP)Ir(PMe2Ph)]BF4 (9) and [(TTP)IrP(OEt)3]BF4 (10), respectively. The carbamoyl complexes (TTP)Ir(L)[C(O)NHR] (L = RNH2 (2a–d), 1-MeIm (4a), P(OEt)3 (5b), PMe2Ph (6c)) reacted with methyl iodide to give the iodo complexes (TTP)Ir(L)I (L = RNH2 (11a–d), 1-MeIm (12), P(OEt)3(13), PMe2Ph (14)). Reactions of the complexes [(TTP)Ir(PMe2Ph)]BF4 (9) and [(TTP)IrP(OEt)3]BF4 (10) with [Bu4N]I, benzylamine (BnNH2), and PMe2Ph afforded (TTP)Ir(PMe2Ph)I (14), (TTP)Ir[P(OEt)3]I (13), [(TTP)Ir(PMe2Ph)(NH2Bn)]BF4 (16), and trans-[(TTP)Ir(PMe2Ph)2]BF4 (17), respectively. Metrical details for the molecular structures of 4a and17 are reported

    Lewis Base Mediated β-Elimination and Lewis Acid Mediated Insertion Reactions of Disilazido Zirconium Compounds

    Get PDF
    The reactivity of a series of disilazido zirconocene complexes is dominated by the migration of anionic groups (hydrogen, alkyl, halide, OTf) between the zirconium and silicon centers. The direction of these migrations is controlled by the addition of two-electron donors (Lewis bases) or two-electron acceptors (Lewis acids). The cationic nonclassical [Cp2ZrN(SiHMe2)2]+ ([2]+) is prepared from Cp2Zr{N(SiHMe2)2}H (1) and B(C6F5)3 or [Ph3C][B(C6F5)4], while reactions of B(C6F5)3 and Cp2Zr{N(SiHMe2)2}R (R = Me (3), Et (5), n-C3H7 (7), CH═CHSiMe3 (9)) provide a mixture of [2]+ and [Cp2ZrN(SiHMe2)(SiRMe2)]+. The latter products are formed through B(C6F5)3 abstraction of a β-H and R group migration from Zr to the β-Si center. Related β-hydrogen abstraction and X group migration reactions are observed for Cp2Zr{N(SiHMe2)2}X (X = OTf (11), Cl (13), OMe (15), O-i-C3H7 (16)). Alternatively, addition of DMAP (DMAP = 4-(dimethylamino)pyridine) to [2]+ results in coordination to a Si center and hydrogen migration to zirconium, giving the cationic complex [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}H]+ ([19]+). Related hydrogen migration occurs from [Cp2ZrN(SiHMe2)(SiMe2OCHMe2)]+ ([18]+) to give [Cp2Zr{N(SiMe2DMAP)(SiMe2OCHMe2)}H]+ ([22]+), whereas X group migration is observed upon addition of DMAP to [Cp2ZrN(SiHMe2)(SiMe2X)]+ (X = OTf ([12]+), Cl ([14]+)) to give [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}X]+ (X = OTf ([26]+), Cl ([20]+)). The species involved in these transformations are described by resonance structures that suggest β-elimination. Notably, such pathways are previously unknown in early metal amide chemistry. Finally, these migrations facilitate direct Si–H addition to carbonyls, which is proposed to occur through a pathway that previously had been reserved for later transition metal compounds
    corecore