522 research outputs found
The Anisoplanatic Point Spread Function in Adaptive Optics
The effects of anisoplanatism on the adaptive optics point spread function
are investigated. A model is derived that combines observations of the guide
star with an analytic formulation of anisoplanatism to generate predictions for
the adaptive optics point spread function at arbitrary locations within the
field of view. The analytic formulation captures the dependencies of
anisoplanatism on aperture diameter, observing wavelength, angular offset,
zenith angle and turbulence profile. The predictions of this model are compared
to narrowband 2.12 um and 1.65 um images of a 21 arcsec binary (mV=7.3, 7.6)
acquired with the Palomar Adaptive Optics System on the Hale 5 meter telescope.
Contemporaneous measurements of the turbulence profile made with a DIMM/MASS
unit are used together with images of the primary to predict the point spread
function of the binary companion. Predicted companion Strehl ratios are shown
to match measurements to within a few percent, whereas predictions based on the
isoplanatic angle approximation are highly discrepant. The predicted companion
point spread functions are shown to agree with observations to 10%. These
predictions are used to measure the differential photometry between binary
members to an accuracy of 1 part in 10^{3}, and the differential astrometry to
an accuracy of 1 mas. Errors in the differential astrometry are shown to be
dominated by differential atmospheric tilt jitter. These results are compared
to other techniques that have been employed for photometry, astrometry, and
high contrast imaging.Comment: 26 pages, 7 figure
Scaling multiconjugate adaptive optics performance estimates to extremely large telescopes
Multi-conjugate adaptive optics (MCAO) is a key technology for extremely large, ground-based telescopes (ELT's) because it enables near-uniform atmospheric turbulence compensation over fields-of-view considerably larger than can be corrected with more conventional AO systems. Quantitative performance evaluation using detailed analytical or simulation models is difficult, however, due to the very large number of deformable mirror (DM) actuators, wave front sensors (WFS) subapertures, and guide stars which might comprise an MCAO system for an ELT. This paper employs more restricted minimal variance estimation methods to evaluate the fundamental performance limits imposed by anisoplanatism alone upon MCAO performance for a range of sample cases. Each case is defined by a atmospheric turbulence profile, telescope aperture diameter, field-of-view, guide star constellation, and set of DM conjugate ranges. For a Kolmogorov turbulence spectrum with an infinite outer scale, MCAO performance for a whole range of aperture diameters and proportional fields-of-view can be computed at once using a scaling law analogous to the (D/d_O)^(5/3) formula for the cone effect. For 30 meter telescopes, useful levels of performance are possible across a 1.0 - 2.0 arc minute square field-of-view using 5 laser guide stars (LGS's) and 3 DM's, and somewhat larger fields can be corrected using 9 guide stars and 4 mirrors. 3 or more tip/tilt natural guide stars (NGS's) are necessary to detect modes of tilt anisoplanatism which cannot be detected using LGS's, however. LGS MCAO performance is a quite weak function of aperture diameter for a fixed field-of-view, and it is tempting to scale these results to larger apertures. NGS MCAO performance is moderately superior to LGS MCAO if the NGS constellation is within the compensated field-of-view, but degrades rapidly as the guide stars move away from the field. The penalty relaxes slowly with increasing aperture diameter, but how to extrapolate this trend to telescopes with diameters much larger than 30 meters is unclear
Principles, limitations, and performance of multiconjugate adaptive optics
Multi-Conjugate Adaptive Optics (MCAO) holds the promise of moderate to large adaptively compensated field of view with uniform image quality. This paper is a first effort to analyze the fundamental limitations of such systems, and that are mainly related to the finite number of deformable mirrors and guide stars. We demonstrate that the ultimate limitation is due to the vertical discretization of the correction. This effect becomes more severe quite rapidly with increasing compensated field of view or decreasing wavelength, but does not depend at first order on the telescope aperture. We also discuss limitations associated with the use of laser guide stars and ELT related issues
Ground-layer wavefront reconstruction from multiple natural guide stars
Observational tests of ground layer wavefront recovery have been made in open
loop using a constellation of four natural guide stars at the 1.55 m Kuiper
telescope in Arizona. Such tests explore the effectiveness of wide-field seeing
improvement by correction of low-lying atmospheric turbulence with ground-layer
adaptive optics (GLAO). The wavefronts from the four stars were measured
simultaneously on a Shack-Hartmann wavefront sensor (WFS). The WFS placed a 5 x
5 array of square subapertures across the pupil of the telescope, allowing for
wavefront reconstruction up to the fifth radial Zernike order. We find that the
wavefront aberration in each star can be roughly halved by subtracting the
average of the wavefronts from the other three stars. Wavefront correction on
this basis leads to a reduction in width of the seeing-limited stellar image by
up to a factor of 3, with image sharpening effective from the visible to near
infrared wavelengths over a field of at least 2 arc minutes. We conclude that
GLAO correction will be a valuable tool that can increase resolution and
spectrographic throughput across a broad range of seeing-limited observations.Comment: 25 pages, 8 figures, to be published in Astrophys.
The footprint of cometary dust analogues: II. Morphology as a tracer of tensile strength and application to dust collection by the Rosetta spacecraft
The structure of cometary dust is a tracer of growth processes in the
formation of planetesimals. Instrumentation on board the Rosetta mission to
comet 67P/Churyumov- Gerasimenko captured dust particles and analysed them in
situ. However, these deposits are a product of a collision within the
instrument. We conducted laboratory experiments with cometary dust analogues,
simulating the collection process by Rosetta instruments (specifically COSIMA,
MIDAS). In Paper I we reported that velocity is a key driver in determining the
appearance of deposits. Here in Paper II we use materials with different
monomer sizes, and study the effect of tensile strength on the appearance of
deposits. We find that mass transfer efficiency increases from 1 up to
10% with increasing monomer diameter from 0.3 m to 1.5 m (i.e.
tensile strength decreasing from 12 to 3 kPa), and velocities
increasing from 0.5 to 6 m/s. Also, the relative abundance of small fragments
after impact is higher for material with higher tensile strength. The
degeneracy between the effects of velocity and material strength may be lifted
by performing a closer study of the deposits. This experimental method makes it
possible to estimate the mass transfer efficiency in the COSIMA instrument.
Extrapolating these results implies that more than half of the dust collected
during the Rosetta mission has not been imaged. We analysed two COSIMA targets
containing deposits from single collisions. The collision that occurred closest
to perihelion passage led to more small fragments on the target.Comment: 13 pages, 11 figures, accepted for publication in MNRA
Prospects for measuring supermassive black hole masses with future extremely large telescopes
The next generation of giant-segmented mirror telescopes ( 20 m) will
enable us to observe galactic nuclei at much higher angular resolution and
sensitivity than ever before. These capabilities will introduce a revolutionary
shift in our understanding of the origin and evolution of supermassive black
holes by enabling more precise black hole mass measurements in a mass range
that is unreachable today. We present simulations and predictions of the
observations of nuclei that will be made with the Thirty Meter Telescope (TMT)
and the adaptive optics assisted integral-field spectrograph IRIS, which is
capable of diffraction-limited spectroscopy from band (0.9 m) to
band (2.2 m). These simulations, for the first time, use realistic values
for the sky, telescope, adaptive optics system, and instrument, to determine
the expected signal-to-noise ratio of a range of possible targets spanning
intermediate mass black holes of \msun to the most massive black
holes known today of . We find that IRIS will be able to
observe Milky Way-mass black holes out the distance of the Virgo cluster, and
will allow us to observe many more brightest cluster galaxies where the most
massive black holes are thought to reside. We also evaluate how well the
kinematic moments of the velocity distributions can be constrained at the
different spectral resolutions and plate scales designed for IRIS. We find that
a spectral resolution of will be necessary to measure the masses of
intermediate mass black holes. By simulating the observations of galaxies found
in SDSS DR7, we find that over massive black holes will be observable at
distances between with the estimated sensitivity and angular
resolution provided by access to -band (0.9 m) spectroscopy from IRIS
and the TMT adaptive optics system. (Abridged)Comment: 19 pages, 20 figures, accepted to A
Adaptive Optics for Astronomy
Adaptive Optics is a prime example of how progress in observational astronomy
can be driven by technological developments. At many observatories it is now
considered to be part of a standard instrumentation suite, enabling
ground-based telescopes to reach the diffraction limit and thus providing
spatial resolution superior to that achievable from space with current or
planned satellites. In this review we consider adaptive optics from the
astrophysical perspective. We show that adaptive optics has led to important
advances in our understanding of a multitude of astrophysical processes, and
describe how the requirements from science applications are now driving the
development of the next generation of novel adaptive optics techniques.Comment: to appear in ARA&A vol 50, 201
- …