97 research outputs found

    Fitting the Elementary Rate Constants of the P-gp Transporter Network in the hMDR1-MDCK Confluent Cell Monolayer Using a Particle Swarm Algorithm

    Get PDF
    P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane

    Controlled Release from Cleavable Polymerized Liposomes upon Redox and pH Stimulation

    Get PDF
    A gallate derivative with three propargyl groups was coupled to palmitoyl oleoyl phosphoethanolamine (POPE). The resulting anionic lipid was formulated with common lipids such as palmitoyl oleoyl phosphatidyl choline (POPC) to form large unilamellar vesicles (LUVs). Polymerization of the LUVs was accomplished by the Cu(I)-catalyzed click reaction between the propargyl groups and the azide groups in the cross-linker. When the cross-linker contained a disulfide or ketal group, the resulting polymerized liposomes depolymerized and released entrapped contents upon the addition of a reducing thiol or under weakly acidic conditions. The click reaction allowed simultaneous multivalent surface functionalization during cross-linking, making these cleavable polymerized liposomes (CPLs) potentially very useful in the delivery and controlled release of pharmaceutical agents

    AAPM Task Group 241: A Medical Physicist's Guide to MRI-guided Focused Ultrasound Body Systems.

    No full text
    Magnetic resonance-guided focused ultrasound (MRgFUS) is a completely non-invasive technology that has been FDA approved to treat several diseases. This report, prepared by the American Association of Physicist in Medicine (AAPM) Task Group 241, provides a background on MRgFUS technology with a focus on clinical body MRgFUS systems. The report addresses the issues of interest to the medical physics community, specific to the body MRgFUS system configuration, and provides recommendations on how to successfully implement and maintain a clinical MRgFUS program. The following sections describe the key features of typical MRgFUS systems and clinical workflow and provide key points and best practices for the medical physicist. Commonly used terms, metrics and physics are defined and sources of uncertainty that affect MRgFUS procedures are described. Finally, safety and quality assurance procedures are explained, the recommended role of the medical physicist in MRgFUS procedures is described, and regulatory requirements for planning clinical trials are detailed. Although this report is limited in scope to clinical body MRgFUS systems that are approved or currently undergoing clinical trials in the United States, much of the material presented is also applicable to systems designed for other applications
    • 

    corecore