54 research outputs found

    Quantifying surface severity of the 2014 and 2015 fires in the Great Slave Lake area of Canada

    Get PDF
    The focus of this paper was the development of surface organic layer severity maps for the 2014 and 2015 fires in the Great Slave Lake area of the Northwest Territories and Alberta, Canada, using multiple linear regression models generated from pairing field data with Landsat 8 data. Field severity data were collected at 90 sites across the region, together with other site metrics, in order to develop a mapping approach for surface severity, an important metric for assessing carbon loss from fire. The approach utilised a combination of remote sensing indices to build a predictive model of severity that was applied within burn perimeters. Separate models were created for burns in the Shield and Plain ecoregions using spectral data from Landsat 8. The final Shield and Plain models resulted in estimates of surface severity with 0.74 variance explained (R2) for the Plain ecoregions and 0.67 for the Shield. The 2014 fires in the Plain ecoregion were more severe than the 2015 fires and fires in both years in the Shield ecoregion. In further analysis of the field data, an assessment of relationships between surface severity and other site-level severity metrics found mixed results

    The Grizzly, November 5, 2009

    Get PDF
    Escape Velocity Performances are Timeless • Dr. William Keim Inspires with Humor • National Deficit May Favor Health Care Reform • Second Annual Greek Activities Fair Held in Wismer Parents Lounge • Sophomores Learn About the ILE • Behind the Scenes: Association for Computing Machinery • Educational Effect of the International Film Festival • Haunted Ursinus: Good ole\u27 Ghost Stories • Opinion: Where Did the Lounges Go? The Cramped UC Community; Texting and Facebook IM: Our Generation Conversation; Drop the Natural Light and Expand Your Beverage Horizons • UC Athletics Spotlight: Alyssa Thren of Field Hockeyhttps://digitalcommons.ursinus.edu/grizzlynews/1798/thumbnail.jp

    A Comparison of Embedded and Nonembedded Print Coverage of the U.S. Invasion and Occupation of Iraq

    Get PDF
    This study examines the impact of embedded versus nonembedded (unilateral) news coverage during the U.S. invasion and occupation of Iraq. A content analysis was conduycted of the Washington Post, New York Times, Los Angeles Times, and Chicago Tribune news coverage of the invasion and occupation examining whether embedded and nonembedded new reports were different and, if so, how. News reports were examined for differences in tone toward the military, trust in the military, framing, and authoritativeness. The results of the study revealed significant differences in overall tone toward the military, trust in military personnel, framing, and authoritativeness between embedded and nonembedded articles.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Burned area and carbon emissions across northwestern boreal North America from 2001-2019

    Get PDF
    Fire is the dominant disturbance agent in Alaskan and Canadian boreal ecosystems and releases large amounts of carbon into the atmosphere. Burned area and carbon emissions have been increasing with climate change, which have the potential to alter the carbon balance and shift the region from a historic sink to a source. It is therefore critically important to track the spatiotemporal changes in burned area and fire carbon emissions over time. Here we developed a new burned-area detection algorithm between 2001-2019 across Alaska and Canada at 500 m (meters) resolution that utilizes finer-scale 30 m Landsat imagery to account for land cover unsuitable for burning. This method strictly balances omission and commission errors at 500 m to derive accurate landscape- and regional-scale burned-area estimates. Using this new burned-area product, we developed statistical models to predict burn depth and carbon combustion for the same period within the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) core and extended domain. Statistical models were constrained using a database of field observations across the domain and were related to a variety of response variables including remotely sensed indicators of fire severity, fire weather indices, local climate, soils, and topographic indicators. The burn depth and aboveground combustion models performed best, with poorer performance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001-2019 over the ABoVE domain (2.87 Mha across all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1 standard deviation) of carbon (C) per year, with a mean combustion rate of 3.13 ± 1.17 kg C m-2. Mean combustion and burn depth displayed a general gradient of higher severity in the northwestern portion of the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greater mean combustion. Our estimates are generally consistent with previous efforts to quantify burned area, fire carbon emissions, and their drivers in regions within boreal North America; however, we generally estimate higher burned area and carbon emissions due to our use of Landsat imagery, greater availability of field observations, and improvements in modeling. The burned area and combustion datasets described here (the ABoVE Fire Emissions Database, or ABoVE-FED) can be used for local- to continental-scale applications of boreal fire science

    Giving ecological meaning to satellite-derived fire severity metrics across North American forests

    Get PDF
    Satellite-derived spectral indices such as the relativized burn ratio (RBR) allow fire severity maps to be produced in a relatively straightforward manner across multiple fires and broad spatial extents. These indices often have strong relationships with field-based measurements of fire severity, thereby justifying their widespread use in management and science. However, satellite-derived spectral indices have been criticized because their non-standardized units render them difficult to interpret relative to on-the-ground fire effects. In this study, we built a Random Forest model describing a field-based measure of fire severity, the composite burn index (CBI), as a function of multiple spectral indices, a variable representing spatial variability in climate, and latitude. CBI data primarily representing forested vegetation from 263 fires (8075 plots) across the United States and Canada were used to build the model. Overall, the model performed well, with a cross-validated R2 of 0.72, though there was spatial variability in model performance. The model we produced allows for the direct mapping of CBI, which is more interpretable compared to spectral indices. Moreover, because the model and all spectral explanatory variables were produced in Google Earth Engine, predicting and mapping of CBI can realistically be undertaken on hundreds to thousands of fires. We provide all necessary code to execute the model and produce maps of CBI in Earth Engine. This study and its products will be extremely useful to managers and scientists in North America who wish to map fire effects over large landscapes or regions

    Increasing fire and the decline of fire adapted black spruce in the boreal forest

    Get PDF
    Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years

    Burn Severity and Fire History in the Northwestern Canadian Boreal Forest: Drivers and Ecological Outcomes

    Get PDF
    Wildfire is the dominant stand-renewing disturbance in the northwestern Canadian boreal forest. Fires burn extensive areas in Canada, disturbing an average of 1.96 Mha yr−1, primarily in the boreal zone. Fires generally occur every ~30 – \u3e 200 years in this region, due in part to a lack of fuel that allows young stands to resist reburning. Boreal understory plants and trees are adapted to stand-renewing wildfire through mechanisms such as serotiny, seed banking, and resprouting from roots and rhizomes of top-killed individuals. Such adaptations confer resilience to boreal forests, and post-fire vegetation communities generally resemble the pre-fire ones, following a stand self-replacement trajectory. Recently, the area burned, average fire size, and fire season length in northwestern Canada have increased. Severe fire weather has enabled reburning of young forests at very short intervals (sometimes ≤ 10 years between fires). Such changes in fire regime appear to be driven by anthropogenic climate change and increasingly severe fire weather. Furthermore, increasing moisture stress is implicated in simultaneous increases in fire activity, and worsening conditions for post-fire establishment of trees. Shifts in fire regime characteristics, such as burn severity and fire-free interval may lead to changes in vegetation composition following fire, thwarting stand self-replacement expectations

    Weather Conducive to Short-Interval Fire Spread in Boreal Canada

    No full text
    Analysis of fire weather conditions from ERA5-Land conducive to short-interval forest fire spread in Canadian Boreal Forests (1981 - 2021

    Topoedaphic and Forest Controls on Post-Fire Vegetation Assemblies Are Modified by Fire History and Burn Severity in the Northwestern Canadian Boreal Forest

    No full text
    Wildfires, which constitute the most extensive natural disturbance of the boreal biome, produce a broad range of ecological impacts to vegetation and soils that may influence post-fire vegetation assemblies and seedling recruitment. We inventoried post-fire understory vascular plant communities and tree seedling recruitment in the northwestern Canadian boreal forest and characterized the relative importance of fire effects and fire history, as well as non-fire drivers (i.e., the topoedaphic context and climate), to post-fire vegetation assemblies. Topoedaphic context, pre-fire forest structure and composition, and climate primarily controlled the understory plant communities and shifts in the ranked dominance of tree species (***8% and **13% of variance explained, respectively); however, fire and fire-affected soils were significant secondary drivers of post-fire vegetation. Wildfire had a significant indirect effect on understory vegetation communities through post-fire soil properties (**5%), and fire history and burn severity explained the dominance shifts of tree species (*7%). Fire-related variables were important explanatory variables in classification and regression tree models explaining the dominance shifts of four tree species (R2 = 0.43–0.65). The dominance of jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.) increased following fires, whereas that of black spruce (Picea mariana (Mill.) BSP.) and white spruce (Picea glauca (Moench) Voss) declined. The overriding importance of site and climate to post-fire vegetation assemblies may confer some resilience to disturbed forests; however, if projected increases in fire activity in the northwestern boreal forest are borne out, secondary pathways of burn severity, fire frequency, and fire effects on soils are likely to accelerate ongoing climate-driven shifts in species compositions
    • …
    corecore