8 research outputs found

    Reproducibility of goniometric measurement of the knee in the in-hospital phase following total knee arthroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of the present study was to assess interobserver reproducibility (in terms of reliability and agreement) of active and passive measurements of knee RoM using a long arm goniometer, performed by trained physical therapists in a clinical setting in total knee arthroplasty patients, within the first four days after surgery.</p> <p>Methods</p> <p>Test-retest analysis</p> <p>Setting: University hospital departments of orthopaedics and physical therapy</p> <p>Participants: Two experienced physical therapists assessed 30 patients, three days after total knee arthroplasty.</p> <p>Main outcome measure: RoM measurement using a long-arm (50 cm) goniometer</p> <p>Agreement was calculated as the mean difference between observers ± 95% CI of this mean difference. The intraclass correlation coefficient (ICC) was calculated as a measure of reliability, based on two-way random effects analysis of variance.</p> <p>Results</p> <p>The lowest level of agreement was that for measurement of passive flexion with the patient in supine position (mean difference 1.4°; limits of agreement 16.2° to 19° for the difference between the two observers. The highest levels of agreement were found for measurement of passive flexion with the patient in sitting position and for measurement of passive extension (mean difference 2.7°; limits of agreement -6.7 to 12.1 and mean difference 2.2°; limits of agreement -6.2 to 10.6 degrees, respectively). The ability to differentiate between subjects ranged from 0.62 for measurement of passive extension to 0.89 for measurements of active flexion (ICC values).</p> <p>Conclusion</p> <p>Interobserver agreement for flexion as well as extension was only fair. When two different observers assess the same patients in the acute phase after total knee arthroplasty using a long arm goniometer, differences in RoM of less than eight degrees cannot be distinguished from measurement error. Reliability was found to be acceptable for comparison on group level, but poor for individual comparisons over time.</p

    A primary culture of distal convoluted tubules expressing functional thiazide-sensitive NaCl transport

    Full text link
    Studying the molecular regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for understanding how the kidney contributes to blood pressure regulation. Until now, a native mammalian cell model to investigate this transporter remained unknown. Our aim here is to establish, for the first time, a primary distal convoluted tubule (DCT) cell culture exhibiting transcellular thiazide-sensitive Na(+) transport. Because parvalbumin (PV) is primarily expressed in the DCT, where it colocalizes with NCC, kidneys from mice expressing enhanced green-fluorescent protein (eGFP) under the PV gene promoter (PV-eGFP-mice) were employed. The Complex Object Parametric Analyzer and Sorter (COPAS) was used to sort fluorescent PV-positive tubules from these kidneys, which were then seeded onto permeable supports. After 6 days, DCT cell monolayers developed transepithelial resistance values of 630 ± 33 Ω·cm(2). The monolayers also established opposing transcellular concentration gradients of Na(+) and K(+). Radioactive (22)Na(+) flux experiments showed a net apical-to-basolateral thiazide-sensitive Na(+) transport across the monolayers. Both hypotonic low-chloride medium and 1 μM angiotensin II increased this (22)Na(+) transport significantly by four times, which could be totally blocked by 100 μM hydrochlorothiazide. Angiotensin II-stimulated (22)Na(+) transport was also inhibited by 1 μM losartan. Furthermore, NCC present in the DCT monolayers was detected by immunoblot and immunocytochemistry studies. In conclusion, a murine primary DCT culture was established which expresses functional thiazide-sensitive Na(+)-Cl(-) transport

    Differences between observers, plotted against the mean values of both observers for each patient for passive extension

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Reproducibility of goniometric measurement of the knee in the in-hospital phase following total knee arthroplasty"</p><p>http://www.biomedcentral.com/1471-2474/8/83</p><p>BMC Musculoskeletal Disorders 2007;8():83-83.</p><p>Published online 17 Aug 2007</p><p>PMCID:PMC2040146.</p><p></p> The figure shows the mean difference between observers (solid line at centre) and the limits of agreement (dashed outer lines corresponding to ±1.96 SD of the mean difference between the first and second observers)

    Scatter plot of interobserver reliability of measurement of passive flexion whilst sitting, as indicated by the ICCs

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Reproducibility of goniometric measurement of the knee in the in-hospital phase following total knee arthroplasty"</p><p>http://www.biomedcentral.com/1471-2474/8/83</p><p>BMC Musculoskeletal Disorders 2007;8():83-83.</p><p>Published online 17 Aug 2007</p><p>PMCID:PMC2040146.</p><p></p

    BYON4228 is a pan-allelic antagonistic SIRPα antibody that potentiates destruction of antibody-opsonized tumor cells and lacks binding to SIRPγ on T cells

    No full text
    Background Preclinical studies have firmly established the CD47-signal-regulatory protein (SIRP)α axis as a myeloid immune checkpoint in cancer, and this is corroborated by available evidence from the first clinical studies with CD47 blockers. However, CD47 is ubiquitously expressed and mediates functional interactions with other ligands as well, and therefore targeting of the primarily myeloid cell-restricted inhibitory immunoreceptor SIRPα may represent a better strategy.Method We generated BYON4228, a novel SIRPα-directed antibody. An extensive preclinical characterization was performed, including direct comparisons to previously reported anti-SIRPα antibodies.Results BYON4228 is an antibody directed against SIRPα that recognizes both allelic variants of SIRPα in the human population, thereby maximizing its potential clinical applicability. Notably, BYON4228 does not recognize the closely related T-cell expressed SIRPγ that mediates interactions with CD47 as well, which are known to be instrumental in T-cell extravasation and activation. BYON4228 binds to the N-terminal Ig-like domain of SIRPα and its epitope largely overlaps with the CD47-binding site. BYON4228 blocks binding of CD47 to SIRPα and inhibits signaling through the CD47-SIRPα axis. Functional studies show that BYON4228 potentiates macrophage-mediated and neutrophil-mediated killing of hematologic and solid cancer cells in vitro in the presence of a variety of tumor-targeting antibodies, including trastuzumab, rituximab, daratumumab and cetuximab. The silenced Fc region of BYON4228 precludes immune cell-mediated elimination of SIRPα-positive myeloid cells, implying anticipated preservation of myeloid immune effector cells in patients. The unique profile of BYON4228 clearly distinguishes it from previously reported antibodies representative of agents in clinical development, which either lack recognition of one of the two SIRPα polymorphic variants (HEFLB), or cross-react with SIRPγ and inhibit CD47-SIRPγ interactions (SIRPAB-11-K322A, 1H9), and/or have functional Fc regions thereby displaying myeloid cell depletion activity (SIRPAB-11-K322A). In vivo, BYON4228 increases the antitumor activity of rituximab in a B-cell Raji xenograft model in human SIRPαBIT transgenic mice. Finally, BYON4228 shows a favorable safety profile in cynomolgus monkeys.Conclusions Collectively, this defines BYON4228 as a preclinically highly differentiating pan-allelic SIRPα antibody without T-cell SIRPγ recognition that promotes the destruction of antibody-opsonized cancer cells. Clinical studies are planned to start in 2023

    NDUFA10 mutations cause complex I deficiency in a patient with Leigh disease

    No full text
    Mitochondrial complex I deficiency is the most common defect of the oxidative phosphorylation system. We report a patient with Leigh syndrome who showed a complex I deficiency expressed in cultured fibroblasts and muscle tissue. To find the genetic cause of the complex I deficiency, we screened the mitochondrial DNA and the nuclear-encoded subunits of complex I. We identified compound-heterozygous mutations in the NDUFA10 gene, encoding an accessory subunit of complex I. The first mutation disrupted the start codon and the second mutation resulted in an amino acid substitution. The fibroblasts of the patient displayed decreased amount and activity, and a disturbed assembly of complex I. These results indicate that NDUFA10 is a novel candidate gene to screen for disease-causing mutations in patients with complex I deficiency
    corecore