163 research outputs found

    Environmental chemical exposures and disturbances of heme synthesis.

    Get PDF
    Porphyrias are relatively uncommon inherited or acquired disorders in which clinical manifestations are attributable to a disturbance of heme synthesis (porphyrin metabolism), usually in association with endogenous or exogenous stressors. Porphyrias are characterized by elevations of heme precursors in blood, urine, and/or stool. A number of chemicals, particularly metals and halogenated hydrocarbons, induce disturbances of heme synthesis in experimental animals. Certain chemicals have also been linked to porphyria or porphyrinuria in humans, generally involving chronic industrial exposures or environmental exposures much higher than those usually encountered. A noteworthy example is the Turkish epidemic of porphyria cutanea tarda produced by accidental ingestion of wheat treated with the fungicide hexachlorobenzene. Measurements of excreted heme precursors have the potential to serve as biological markers for harmful but preclinical effects of certain chemical exposures; this potential warrants further research and applied field studies. It has been hypothesized that several otherwise unexplained chemical-associated illnesses, such as multiple chemical sensitivity syndrome, may represent mild chronic cases of porphyria or other acquired abnormalities in heme synthesis. This review concludes that, although it is reasonable to consider such hypotheses, there is currently no convincing evidence that these illnesses are mediated by a disturbance of heme synthesis; it is premature or unfounded to base clinical management on such explanations unless laboratory data are diagnostic for porphyria. This review discusses the limitations of laboratory measures of heme synthesis, and diagnostic guidelines are provided to assist in evaluating the symptomatic individual suspected of having a porphyria

    Separating the influences of prereading skills on early word and nonword reading

    Get PDF
    The essential first step for a beginning reader is to learn to match printed forms to phonological representations. For a new word, this is an effortful process where each grapheme must be translated individually (serial decoding). The role of phonological awareness in developing a decoding strategy is well known. We examined whether beginning readers recruit different skills depending on the nature of the words being read (familiar words vs. nonwords). Print knowledge, phoneme and rhyme awareness, rapid automatized naming (RAN), phonological short-term memory (STM), nonverbal reasoning, vocabulary, auditory skills, and visual attention were measured in 392 prereaders 4 and 5 years of age. Word and nonword reading were measured 9 months later. We used structural equation modeling to examine the skills–reading relationship and modeled correlations between our two reading outcomes and among all prereading skills. We found that a broad range of skills were associated with reading outcomes: early print knowledge, phonological STM, phoneme awareness and RAN. Whereas all of these skills were directly predictive of nonword reading, early print knowledge was the only direct predictor of word reading. Our findings suggest that beginning readers draw most heavily on their existing print knowledge to read familiar words

    Geometric and Electronic Structures of the NiI and Methyl−NiIII Intermediates of Methyl-Coenzyme M Reductase†

    Get PDF
    ABSTRACT: Methyl-coenzyme M reductase (MCR) catalyzes the terminal step in the formation of biological methane from methyl-coenzyme M (Me-SCoM) and coenzyme B (CoBSH). The active site in MCR contains a Ni-F430 cofactor, which can exist in different oxidation states. The catalytic mechanism of methane formation has remained elusive despite intense spectroscopic and theoretical investigations. On the basis of spectroscopic and crystallographic data, the first step of the mechanism is proposed to involve a nucleophilic attack of the NiI active state (MCRred1) on Me-SCoM to form a NiIII-methyl intermediate, while computational studies indicate that the first step involves the attack of NiI on the sulfur of Me-SCoM, forming a CH3 radical and a NiII-thiolate species. In this study, a combination of Ni K-edge X-ray absorption spectroscopic (XAS) studies and density functional theory (DFT) calculations have been performed on the NiI (MCRred1), NiII (MCRred1-silent), and NiIII-methyl (MCRMe) states of MCR to elucidate the geometric and electronic structures of the different redox states. Ni K-edge EXAFS data are used to reveal a five-coordinate active site with an open upper axial coordination site in MCRred1. Ni K-pre-edge and EXAFS data and time-dependent DFT calculations unambiguously demonstrate the presence of a long Ni-C bond (∼2.04 Å) in the NiIII-methyl state of MCR. The formation and stability of this species support mechanism I, and the Ni-C bond length suggests a homolytic cleavage of the NiIII-methyl bon

    Risk and Cooperation: Managing Hazardous Fuel in Mixed Ownership Landscapes

    Get PDF
    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people’s beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private–private cooperation than to private–public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk

    Neonatal Androgenization Exacerbates Alcohol-Induced Liver Injury in Adult Rats, an Effect Abrogated by Estrogen

    Get PDF
    Alcoholic liver disease (ALD) affects millions of people worldwide and is a major cause of morbidity and mortality. However, fewer than 10% of heavy drinkers progress to later stages of injury, suggesting other factors in ALD development, including environmental exposures and genetics. Females display greater susceptibility to the early damaging effects of ethanol. Estrogen (E2) and ethanol metabolizing enzymes (cytochrome P450, CYP450) are implicated in sex differences of ALD. Sex steroid hormones are developmentally regulated by the hypothalamic-pituitary-gonadal (HPG) axis, which controls sex-specific cycling of gonadal steroid production and expression of hepatic enzymes. The aim of this study was to determine if early postnatal inhibition of adult cyclic E2 alters ethanol metabolizing enzyme expression contributing to the development of ALD in adulthood. An androgenized rat model was used to inhibit cyclic E2 production. Control females (Ctrl), androgenized females (Andro) and Andro females with E2 implants were administered either an ethanol or isocalorically-matched control Lieber-DeCarli diet for four weeks and liver injury and CYP450 expression assessed. Androgenization exacerbated the deleterious effects of ethanol demonstrated by increased steatosis, lipid peroxidation, profibrotic gene expression and decreased antioxidant defenses compared to Ctrl. Additionally, CYP2E1 expression was down-regulated in Andro animals on both diets. No change was observed in CYP1A2 protein expression. Further, continuous exogenous administration of E2 to Andro in adulthood attenuated these effects, suggesting that E2 has protective effects in the androgenized animal. Therefore, early postnatal inhibition of cyclic E2 modulates development and progression of ALD in adulthood

    Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    Full text link

    The elegans of spindle assembly

    Get PDF
    The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly
    corecore