39 research outputs found

    Influences on and measures of unintentional group synchrony

    Get PDF
    Many instances of large-scale coordination occur in real-life social situations without the explicit awareness of the individuals involved. While the majority of research to date has examined dyadic interactions – those between two individuals – during intentional or deliberate coordination, the present review surveys the handful of recent studies investigating behavioral and physiological synchrony across groups of more than two people when coordination was not an explicit goal. Both minimal (e.g., visual information, shared location) and naturalistic (e.g., choir singing part, family relationship) group interactions appear to promote unintentional group synchrony although they have so far only been studied separately. State differences in unintentional group synchrony, or the relative presence of coordination in various conditions, have tended to be assessed differently, such as using correlation-type relationships, compared to its temporal dynamics, or changes over time in the degree of coordination, which appear to be best captured using phase differences. Simultaneously evaluating behavioral, physiological, and social responses as well systematically comparing different synchrony measures could further our understanding of the influences on and measures of group synchrony, allowing us to move away from studying individual persons responding to static laboratory stimuli and towards investigating collective experiences in natural, dynamic social interactions

    Examinations of identity invariance in facial expression adaptation

    No full text

    One in the dance: Musical correlates of group synchrony in a real-world club environment

    No full text
    Previous research on interpersonal synchrony has mainly investigated small groups in isolated laboratory settings, which may not fully reflect the complex and dynamic interactions of real-life social situations. The present study expands on this by examining group synchrony across a large number of individuals in a naturalistic environment. Smartphone acceleration measures were recorded from participants during a music set in a dance club and assessed to identify how group movement synchrony covaried with various features of the music. In an evaluation of different preprocessing and analysis methods, giving more weight to front-back movement provided the most sensitive and reliable measure of group synchrony. During the club music set, group synchrony of torso movement was most strongly associated with pulsations that approximate walking rhythm (100–150 beats per minute). Songs with higher real-world play counts were also correlated with greater group synchrony. Group synchrony thus appears to be constrained by familiarity of the movement (walking action and rhythm) and of the music (song popularity). These findings from a real-world, large-scale social and musical setting can guide the development of methods for capturing and examining collective experiences in the laboratory and for effectively linking them to synchrony across people in daily life

    Neural dynamics of spontaneous thought: An electroencephalographic study

    No full text
    Spontaneous thinking is a ubiquitous aspect of our mental life and has increasingly become a hot topic of research in cognitive neuroscience. To date, functional neuroimaging studies of spontaneous thought have revealed general brain recruitment centered on a combination of default mode network and executive regions. Despite recent findings about general brain recruitment, very little is known about how these regions are recruited dynamically over time. The current research addresses this gap in the literature by using EEG to investigate the fine-grained temporal dynamics of brain activity underlying spontaneous thoughts. We employed the first-person reports of experienced meditators to index the onset of spontaneous thoughts, and examined brain electrical activity preceding indications of spontaneous thought onset. An independent component analysis-based source localization procedure recovered sources very similar to those previously found with fMRI (Ellamil et al. in NeuroImage 136:186–196, 2016). In addition, phase synchrony analyses revealed a temporal trajectory that begins with default network midline and salience network connectivity, followed by the incorporation of language and executive regions during the period from thought generation to appraisal

    Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations

    No full text
    Meditation is a family of mental practices that encompasses a wide array of techniques employing distinctive mental strategies. We systematically reviewed 78 functional neuroimaging (fMRI and PET) studies of meditation, and used activation likelihood estimation to meta-analyze 257 peak foci from 31 experiments involving 527 participants. We found reliably dissociable patterns of brain activation and deactivation for four common styles of meditation (focused attention, mantra recitation, open monitoring, and compassion/loving-kindness), and suggestive differences for three others (visualization, sense-withdrawal, and non-dual awareness practices). Overall, dissociable activation patterns are congruent with the psychological and behavioral aims of each practice. Some brain areas are recruited consistently across multiple techniques—including insula, pre/supplementary motor cortices, dorsal anterior cingulate cortex, and frontopolar cortex—but convergence is the exception rather than the rule. A preliminary effect-size meta-analysis found medium effects for both activations (d = 0.59) and deactivations (d = −0.74), suggesting potential practical significance. Our meta-analysis supports the neurophysiological dissociability of meditation practices, but also raises many methodological concerns and suggests avenues for future research

    A functional connectome phenotyping dataset including cognitive state and personality measures

    No full text
    The dataset enables exploration of higher-order cognitive faculties, self-generated mental experience, and personality features in relation to the intrinsic functional architecture of the brain. We provide multimodal magnetic resonance imaging (MRI) data and a broad set of state and trait phenotypic assessments: mind-wandering, personality traits, and cognitive abilities. Specifically, 194 healthy participants (between 20 and 75 years of age) filled out 31 questionnaires, performed 7 tasks, and reported 4 probes of in-scanner mind-wandering. The scanning session included four 15.5-min resting-state functional MRI runs using a multiband EPI sequence and a hig h-resolution structural scan using a 3D MP2RAGE sequence. This dataset constitutes one part of the MPI-Leipzig Mind-Brain-Body database
    corecore