15 research outputs found

    If it’s not one thing, HIF’s another : immunoregulation by hypoxia inducible factors in disease

    Get PDF
    Hypoxia‐inducible factors (HIFs) have emerged in recent years as critical regulators of immunity. Localised, low oxygen tension is a hallmark of inflamed and infected tissues. Subsequent myeloid cell HIF stabilisation plays key roles in the innate immune response, alongside emerging oxygen‐independent roles. Manipulation of regulatory proteins of the HIF transcription factor family can profoundly influence inflammatory profiles, innate immune cell function and pathogen clearance and, as such, has been proposed as a therapeutic strategy against inflammatory diseases. The direction and mode of HIF manipulation as a therapy are dictated by the inflammatory properties of the disease in question, with innate immune cell HIF reduction being, in general, advantageous during chronic inflammatory conditions, while upregulation of HIF is beneficial during infections. The therapeutic potential of targeting myeloid HIFs, both genetically and pharmacologically, has been recently illuminated in vitro and in vivo , with an emerging range of inhibitory and activating strategies becoming available. This review focuses on cutting edge findings that uncover the roles of myeloid cell HIF signalling on immunoregulation in the contexts of inflammation and infection and explores future directions of potential therapeutic strategies

    Teleost contributions to the understanding of mycobacterial diseases

    Get PDF
    Few pathogens have shaped human medicine as the mycobacteria. From understanding biological phenomena driving disease spread, to mechanisms of host-pathogen interactions and antibiotic resistance, the Mycobacterium genus continues to challenge and offer insights into the basis of health and disease. Teleost fish models of mycobacterial infections have progressed significantly over the past three decades, now supplying a range of unique tools and new opportunities to define the strategies employed by these Gram-positive bacteria to overcome host defenses, as well as those host antimicrobial pathways that can be used to limit its growth and spread. Herein, we take a comparative perspective and provide an update on the contributions of teleost models to our understanding of mycobacterial diseases

    Hypoxia induces macrophage tnfa expression via cyclooxygenase and prostaglandin E2 in vivo

    Get PDF
    Macrophage phenotypes are poorly characterized in disease systems in vivo. Appropriate macrophage activation requires complex coordination of local microenvironmental cues and cytokine signaling. If the molecular mechanisms underpinning macrophage activation were better understood, macrophages could be pharmacologically tuned during disease situations. Here, using zebrafish tnfa:GFP transgenic lines as in vivo readouts, we show that physiological hypoxia and stabilization of Hif-1α promotes macrophage tnfa expression. We demonstrate a new mechanism of Hif-1α-induced macrophage tnfa expression via a cyclooxygenase/prostaglandin E2 axis. These findings uncover a macrophage HIF/COX/TNF axis that links microenvironmental cues to macrophage phenotype, with important implications during inflammation, infection, and cancer, where hypoxia is a common microenvironmental feature and where cyclooxygenase and TNF are major mechanistic players

    A method for the in vivo measurement of zebrafish tissue neutrophil lifespan.

    Get PDF
    Neutrophil function is thought to be regulated, in large part, by limitation of lifespan by apoptosis. A number of studies suggest that circulating neutrophils have a half-life of approximately 6 hours, although contradictory evidence exists. Measuring tissue neutrophil lifespan, however, is more problematic. It is thought that tissue neutrophils survive longer, perhaps with a half-life in the order of 3-5 days, but this has never been directly measured. Zebrafish are an emerging model organism, with several advantages for the study of vertebrate immunity. In zebrafish, neutrophils constitutively assume tissue locations allowing their direct study in vivo. Using a transgenic approach, neutrophils were labelled with a photoconvertible pigment, Kaede. Photoconversion parameters were optimised and the stability of the Kaede confirmed. Individual neutrophils were photoconverted by scanning a confocal 405 nm laser specifically over each cell and their survival monitored for 48 hours, revealing an in vivo half-life for zebrafish tissue neutrophils of around 120 hours (117.7 hrs, 95% CI 95.67-157.8). Laser energy did not extend neutrophil lifespan, and we conclude that this represents a lower bound for the lifespan of a resting tissue neutrophil in the developing zebrafish larva. This is the first direct measurement of the lifespan of an in vivo tissue neutrophil

    Hif‐1alpha stabilisation is protective against infection in zebrafish comorbid models

    Get PDF
    Multi‐drug‐resistant tuberculosis is a worldwide problem, and there is an urgent need for host‐derived therapeutic targets, circumventing emerging drug resistance. We have previously shown that hypoxia‐inducible factor‐1α (Hif‐1α) stabilisation helps the host to clear mycobacterial infection via neutrophil activation. However, Hif‐1α stabilisation has also been implicated in chronic inflammatory diseases caused by prolonged neutrophilic inflammation. Comorbid infection and inflammation can be found together in disease settings, and it remains unclear whether Hif‐1α stabilisation would be beneficial in a holistic disease setting. Here, we set out to understand the effects of Hif‐1α on neutrophil behaviour in a comorbid setting by combining two well‐characterised in vivo zebrafish models – TB infection (Mycobacterium marinum infection) and sterile injury (tailfin transection). Using a local Mm infection near to the tailfin wound site caused neutrophil migration between the two sites that was reduced during Hif‐1α stabilisation. During systemic Mm infection, wounding leads to increased infection burden, but the protective effect of Hif‐1α stabilisation remains. Our data indicate that Hif‐1α stabilisation alters neutrophil migration dynamics between comorbid sites and that the protective effect of Hif‐1α against Mm is maintained in the presence of inflammation, highlighting its potential as a host‐derived target against TB infection

    The CXCL12/CXCR4 signaling axis retains neutrophils at inflammatory sites in zebrafish

    Get PDF
    The inappropriate retention of neutrophils at inflammatory sites is a major driver of the excessive tissue damage characteristic of respiratory inflammatory diseases including COPD, ARDS, and cystic fibrosis. The molecular programmes which orchestrate neutrophil recruitment to inflammatory sites through chemotactic guidance have been well-studied. However, how neutrophil sensitivity to these cues is modulated during inflammation resolution is not understood. The identification of neutrophil reverse migration as a mechanism of inflammation resolution and the ability to modulate this therapeutically has identified a new target to treat inflammatory disease. Here we investigate the role of the CXCL12/CXCR4 signaling axis in modulating neutrophil retention at inflammatory sites. We used an in vivo tissue injury model to study neutrophilic inflammation using transgenic zebrafish larvae. Expression of cxcl12a and cxcr4b during the tissue damage response was assessed using in situ hybridization and analysis of RNA sequencing data. CRISPR/Cas9 was used to knockdown cxcl12a and cxcr4b in zebrafish larvae. The CXCR4 antagonist AMD3100 was used to block the Cxcl12/Cxcr4 signaling axis pharmacologically. We identified that cxcr4b and cxcl12a are expressed at the wound site in zebrafish larvae during the inflammatory response. Following tail-fin transection, removal of neutrophils from inflammatory sites is significantly increased in cxcr4b and cxcl12a CRISPR knockdown larvae. Pharmacological inhibition of the Cxcl12/Cxcr4 signaling axis accelerated resolution of the neutrophil component of inflammation, an effect caused by an increase in neutrophil reverse migration. The findings of this study suggest that CXCR4/CXCL12 signaling may play an important role in neutrophil retention at inflammatory sites, identifying a potential new target for the therapeutic removal of neutrophils from the lung in chronic inflammatory disease

    Semaphorin 3F signaling actively retains neutrophils at sites of inflammation

    Get PDF
    Neutrophilic inflammation is central to disease pathogenesis, for example, in chronic obstructive pulmonary disease, yet the mechanisms that retain neutrophils within tissues remain poorly understood. With emerging evidence that axon guidance factors can regulate myeloid recruitment and that neutrophils can regulate expression of a class 3 semaphorin, SEMA3F, we investigated the role of SEMA3F in inflammatory cell retention within inflamed tissues. We observed that neutrophils upregulate SEMA3F in response to proinflammatory mediators and following neutrophil recruitment to the inflamed lung. In both zebrafish tail injury and murine acute lung injury models of neutrophilic inflammation, overexpression of SEMA3F delayed inflammation resolution with slower neutrophil migratory speeds and retention of neutrophils within the tissues. Conversely, constitutive loss of sema3f accelerated egress of neutrophils from the tail injury site in fish, whereas neutrophil-specific deletion of Sema3f in mice resulted in more rapid neutrophil transit through the airways, and significantly reduced time to resolution of the neutrophilic response. Study of filamentous-actin (F-actin) subsequently showed that SEMA3F-mediated retention is associated with F-actin disassembly. In conclusion, SEMA3F signaling actively regulates neutrophil retention within the injured tissues with consequences for neutrophil clearance and inflammation resolution

    Pioneer neutrophils release chromatin within in vivo swarms

    Get PDF
    Neutrophils are rapidly recruited to inflammatory sites where their coordinated migration forms clusters, a process termed neutrophil swarming. The factors that modulate early stages of neutrophil swarming are not fully understood, requiring the development of new in vivo models. Using transgenic zebrafish larvae to study endogenous neutrophil migration in a tissue damage model, we demonstrate that neutrophil swarming is a conserved process in zebrafish immunity, sharing essential features with mammalian systems. We show that neutrophil swarms initially develop around an individual pioneer neutrophil. We observed the violent release of extracellular cytoplasmic and nuclear fragments by the pioneer and early swarming neutrophils. By combining in vitro and in vivo approaches to study essential components of neutrophil extracellular traps (NETs), we provide in-depth characterisation and high-resolution imaging of the composition and morphology of these release events. Using a photoconversion approach to track neutrophils within developing swarms, we identify that the fate of swarm-initiating pioneer neutrophils involves extracellular chromatin release and that the key NET components gasdermin, neutrophil elastase, and myeloperoxidase are required for the swarming process. Together our findings demonstrate that release of cellular components by pioneer neutrophils is an initial step in neutrophil swarming at sites of tissue injury
    corecore