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22 ABSTRACT

23 Few pathogens have shaped human medicine as the mycobacteria. From 

24 understanding biological phenomena driving disease spread, to mechanisms of host-

25 pathogen interactions and antibiotic resistance, the Mycobacterium genus continues to 

26 challenge and offer insights into the basis of health and disease. Teleost fish models of 

27 mycobacterial infections have progressed significantly over the past three decades, now 

28 supplying a range of unique tools and new opportunities to define the strategies employed 

29 by these Gram-positive bacteria to overcome host defenses, as well as those host 

30 antimicrobial pathways that can be used to limit its growth and spread. Herein, we take a 

31 comparative perspective and provide an update on the contributions of teleost models to 

32 our understanding of mycobacterial diseases. 
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53 INTRODUCTION

54 Mycobacterium spp. are Gram-positive, acid-fast staining, non-motile, non-spore 

55 forming bacilli, further defined based on growth rate (rapid or slow growing) and 

56 pigmentation (Runyon, 1959). The Mycobacterium genus consists of over 190 species 

57 that occupy a broad range of ecological niches, and include serious human pathogens like 

58 M. tuberculosis and M. leprae, as well as more innocuous soil-dwelling organisms. M. 

59 tuberculosis has afflicted humans for approximately 70 000 years, and it is thought to 

60 have killed more persons than any other microbial pathogen (Daniel, 2006). In 1865, 

61 Jean-Antoine Villemin, a French military surgeon first demonstrated the infectiousness of 

62 tuberculosis when he inoculated a rabbit with lung tissue from an individual that had died 

63 of tuberculosis (Daniel, 2006). Eighteen years later, Koch identified the bacillus 

64 responsible for TB and posited his famous postulates, setting a gold standard for 

65 demonstrating etiology of infectious disease (Daniel, 2005; Koch, 1952). The Bacille de 

66 Calmette et Guerin (BCG) vaccine was developed by serial passage of Mycobacterium 

67 bovis in 1921, reducing the risk of acquiring TB by approximately 50% (Colditz et al., 

68 1994), although varying levels of effectiveness have been observed based on region, 

69 genetic factors, exposure to other pathogens, and BCG culturing practices 

70 (Venkataswamy et al., 2012). In 1944, the first effective antibiotic against tuberculosis 

71 was introduced by Selman Waksam. Currently, there are a number of antibiotic therapies 

72 with relatively high treatment success (approx. 85%) (Uplekar et al., 2006) though the 

73 emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB 

74 (XDR-TB) create new and urgent challenges in antibiotic therapy. Despite these advances, 

75 it is estimated that one-third of the world’s population is currently infected; the majority 

76 of these cases remain asymptomatic, while approximately 9 million cases of active 

77 tuberculosis (TB) and 1.3 million deaths are reported annually (Daniel, 2006; Herzog, 

78 1998). Latent infections create a unique public health challenge as asymptomatic disease 

79 reservoirs, particularly given ongoing issues with antibiotic resistance and prevalence of 

80 human immunodeficiency virus (HIV) infections (Comstock et al., 1974; Vynnycky and 

81 Fine, 2000).

82 Beyond human disease, the Mycobacterium genus has the capacity to infect a 

83 wide range of domestic and wild animal species, including ruminants (M. bovis/M. 
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84 paratuberculosis), rodents (M. microti), birds (M. avium) reptiles (M. smegmatis) 

85 amphibians and fish (M. marinum) (Hines et al., 1995). These pathogens are exquisitely 

86 adapted to evade and co-opt host immune responses, allowing them to infect, replicate, 

87 persist and transmit to new hosts. Disease typically manifests as granuloma formation, a 

88 hallmark of mycobacterial infection, where aggregates of immune cells contain 

89 pathogenic mycobacteria (Pagan and Ramakrishnan, 2015). In the case of M. marinum, 

90 relative genetic relatedness to M. tuberculosis [80% of total coding sequences (CDS), 

91 which share 85% amino acid similarity, in addition to 99.3% 16S rRNA sequence 

92 similarity] has rendered fish models of infection useful for study of the tuberculosis-like 

93 disease (Stinear et al., 2008). Fish disease models based on M. marinum, M. chelonae and 

94 M. fortuitum infection have further helped our group to gain additional insights into 

95 natural mycobacterial infections. Distinct bacterial growth patterns and granuloma 

96 formation have been identified, although much remains to be learned about what 

97 constitutes an effective host immune response for control of these infections.

98 This review summarizes key parameters in the immune response to mycobacterial 

99 pathogens in mammalian and teleostean model systems, which highlight the complexity 

100 of these host-pathogen interactions and impact the outcome of infection. Our goal is to 

101 build on established insights derived from mammalian systems and offer novel points of 

102 discussion based on recent findings using teleost fish models. We focus on two teleost 

103 species, Danio rerio (zebrafish) and Carassius auratus (goldfish). Each provides unique 

104 attributes for examination of mycobacterial infections. The zebrafish embryo was 

105 developed for use as a model for developmental biology and has been used as such for 

106 the last quarter of a century, primarily due to its external fertilisation and development, 

107 visual transparency, and fecundity of the adults (Brittijn et al., 2009). This model offers 

108 well recognized advantages based on unique molecular tools, genetic manipulation 

109 capacity, and in vivo observation of immune cell transit and host-microbial interactions 

110 early in development. Goldfish, on the other hand, has added opportunities because of the 

111 greater number of cells available, well-established cultivation methodologies for primary 

112 cells from adult fish, and protocols for ex vivo characterization of immune cell function.  

113

114 MYCOBACTERIUM SPP. 
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115 Mycobacteria range in length between 1-10 µm long and 0.2-0.6 µm in diameter 

116 (Gauthier and Rhodes, 2009; Jacobs et al., 2009). Mycolic acids, α-alkyl, β-hydroxyl 

117 long-chain fatty acids, are the most abundant lipid in mycobacterial cell walls, making up 

118 60% of the dry weight. Composition of mycolic acids are diverse within the 

119 Mycobacterium genus and are used in conjunction with genomic approaches for 

120 identification of species and strains (Portevin et al., 2014). Broadly, fast growers can 

121 form colonies in a week or less, while slow growers take longer than a week to form 

122 colonies on solid media. Molecular phylogenetic analysis has been used to further 

123 distinguish and categorize species, which suggests a molecular basis for the growth speed 

124 divisions (Saviola et al., 2006). Slow growing species include prevalent pathogens like M. 

125 tuberculosis, M. marinum, M. leprae and M. avium. Faster growing mycobacterial species 

126 are largely saprophytic, although M. fortuitum and M. chelonae have been shown to be 

127 pathogenic, especially in fish and frog species and under nosocomial settings. As 

128 mentioned, M. marinum and M. tuberculosis are very closely related from a 

129 morphological and molecular standpoint.

130

131 TUBERCULOSIS

132 Tuberculosis (TB) is predominantly a lung disease, which accounts for 70% of 

133 infection cases (Harisinghani et al., 2000). TB can be divided into two major patterns, 

134 primary and post-primary TB. In a recent paper, Behr and colleagues (Behr et al., 2018) 

135 suggested simplified terms to describe progression of TB in patients. Primary 

136 tuberculosis is defined as the initial infection as evidenced by a positive tuberculin skin 

137 test or a new positive interferon gamma release assay; active TB with evidence of 

138 progressive disease of the lung; and tuberculous reactivity which is indirect evidence of 

139 present or past infection with M.tuberculosis as inferred by adaptive immune response to 

140 M. tuberculosis antigens (interferon gamma release assay, positive tuberculin test) in an 

141 asymptomatic person (Behr et al, 2018). Primary infection is typically controlled  by an 

142 immunocompetent individual, although serious disease can manifest in children and 

143 immunocompromised individuals (Hunter et al., 2018). The lesions in the lung that 

144 develop during primary tuberculosis often heal, but despite the reduced pathology, the 

145 infection is rarely sterilized and bacteria can persist for up to several decades as 
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146 subclinical infection, where mycobacteria remain within individual granulomas at a 

147 variety of growth states (Paige and Bishai, 2010). Post-primary tuberculosis occurs 

148 following first infection events, where systemic immunity has already been established 

149 due to re-emergence of infectious bacilli that multiply and produce cavities in the lung 

150 (Hunter, 2011). While the majority of post primary infections also spontaneously recover, 

151 80% of the estimated 9 million yearly clinical cases of TB are the result of post primary 

152 infections (Paige and Bishai, 2010). Ironically, immunocompetent individuals between 

153 the ages of 15-40 are most likely to die from acute post primary TB (Cheeseman, 1952; 

154 Lawn and Acheampong, 1999; Tucker and Dooley, 2018). Further, survivors of post 

155 primary TB have an increased risk in contracting the disease again, rendering no 

156 immunity to previous bouts of the disease (den Boon et al., 2007; van Rie et al., 1999). 

157 Symptoms of active pulmonary TB include chest pain, coughing (with or without blood), 

158 difficulty breathing, excessive sweating, fatigue, fever, weight loss, wheezing, cachexia 

159 (Campbell and Bah-Sow, 2006). Active TB can also manifest as miliary disease, 

160 meningitis, abdominal disease and sepsis (Jacob et al., 2009).

161

162 TELEOST MODELS OF MYCOBACTERIAL DISEASES

163 Although M. tuberculosis can infect most warm-blooded animals, traditional 

164 laboratory infection models prove difficult in recapitulating human disease. Aerosol 

165 transmission is not observed in non-primate models, there is limited capacity to observe 

166 post-primary infection and disease, and only a few models (e.g. guinea pigs) generate 

167 necrotic (caseous) granulomas (Basaraba and Hunter, 2017; Harper et al., 2012). As a 

168 result, a range of animal models continue to be used in an effort to understand 

169 mycobacterial disease, including non-human primates, mice, rabbits, guinea pigs, frogs, 

170 and fish. The lack of a standardized model restricts easy integration of findings; however, 

171 strengths within each of these models continue to yield important insights into the 

172 mechanisms mediating immune responses to mycobacterial pathogens. 

173 Teleosts are evolutionarily one of the first group of organisms to have both the 

174 innate and classical adaptive arms of the immune response, both of which are key to the 

175 pathogenesis of human TB. Moreover, in vivo fish models offer unique advantages over 

176 traditional mammalian models of TB, as mice are not natural hosts of M. tuberculosis and 
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177 primate models are expensive and difficult to work with. Three Mycobacterium spp. are 

178 most often used to elicit disease in fish: M. marinum, M. chelonae and M. fortuitum, 

179 although an increasing number of species have been isolated from fish in recent years 

180 (Gauthier and Rhodes, 2009). M. marinum is the closest related strain to human TB 

181 complex, and as such is the most widely used in the laboratory setting. M. marinum so 

182 closely resembles the human pathogen that it can also infect humans resulting in fish tank 

183 granuloma. This disease occurs when M. marinum enters the extremities through 

184 abrasions on the hand or arms, and produces granulomatous nodes (Petrini, 2006). The 

185 pathology of fish tank granuloma is indistinguishable from cutaneous tuberculosis. 

186 Piscine mycobacteriosis typically manifests as chronic disease, which may or may 

187 not produce clinical signs both externally and internally. Externally, pathology includes 

188 non-specific scale loss and dermal ulceration, pigmentation changes, spinal defects, 

189 lethargy, ascites and emaciation (Jacobs et al., 2009; Leibovitz, 1980). Internal pathology 

190 includes enlargement of the kidney, spleen and liver, as well as grey or white nodules on 

191 internal organs (Gauthier and Rhodes, 2009). Similar to disease in mammals, 

192 granulomatous inflammation represents a classical hallmark of infection. In fish, 

193 granulomas can be found in multiple organs and tissues, and are highly variable in size 

194 and organization (Jacobs et al., 2009). The relative relatedness to M. tuberculosis, as well 

195 as the remarkably similar pathology in fish infections has rendered M. marinum a popular 

196 surrogate model for human tubercular diseases. 

197

198 Mycobacterium marinum

199 Infection with M. marinum was one of the first teleost disease models to be 

200 adopted for increased understanding of the biology of mycobacterial infections, and has 

201 become one of the most successful. Initial studies of infected zebrafish embryos and 

202 adults, and were used to follow disease pathology over time. It was established that, on a 

203 histopathological level, M. marinum infection in adults is a chronic granulomatous 

204 disease that is hard to distinguish from human TB (Meijer et al., 2004; Meijer et al., 

205 2005). Infection of the one-day post fertilization zebrafish embryo led to the formation of 

206 granuloma-like structures within just a few days, in the absence of adaptive immune cells 

207 (Davis et al., 2002). The M. marinum/zebrafish model has also yielded insights into 
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208 mycobacterial virulence factors, drug tolerance and potential therapeutic targets. 

209 Zebrafish infection experiments, for example, showed that WhiB6 modulates levels of 

210 mycobacterial infection, granuloma formation, and dissemination (Chen et al., 2016a). 

211 M. marinum strains lacking phthiocerol dimycocerosates (PDIMs) and structurally 

212 related phenolic glycolipids (PGLs) were also avirulent and hypersensitive to 

213 antibiotics (Yu et al., 2012). Multidrug-tolerant organisms have also been identified 

214 soon after M. marinum infection driven through bacterial-macrophage interactions, 

215 but appear susceptible to bacterial efflux pump inhibitors like verapamil (Adams et 

216 al., 2011).

217 The emergence of transgenic lines labelling innate immune cell populations has 

218 also paved the way for a tractable zebrafish/M. marinum embryo model in which the 

219 innate immune response to mycobacterium infection could be investigated (Hall et al., 

220 2007; Walton et al., 2015)Ellett et al., 2011; Gray et al., 2011; Mathias et al., 2006; 

221 Renshaw et al., 2006). Early morpholino knockdown oligonucleotide technologies also 

222 uncovered important roles for many genetic and enzymatic systems in granuloma 

223 formation, including cytokines (e.g., TNF), cell signalling components (e.g., MyD88) 

224 and cell matrix enzymes (e.g., MMP9) (Clay et al., 2008; van der Vaart et al., 2013; 

225 Volkman et al., 2010). Furthermore, the ability to follow granuloma formation over time 

226 using fluorescence timelapse microscopy has identified multiple rounds of phagocytosis 

227 of M. marinum and cell death leading to the formation of hallmark granuloma structures, 

228 cell behaviours that are likely to occur in and around the human lung upon infection 

229 and/or TB reactivation, but require invasive imaging to observe in mammalian systems 

230 (Hosseini et al., 2016). Importantly, findings from the zebrafish/M. marinum model have 

231 been directly related to human genetic variation and TB disease (Tobin et al., 2012). With 

232 the now widely adopted CRISPR-Cas9 system making it easier to knockout genes in 

233 zebrafish, we expect many additional novel genetic findings in TB pathology from this M. 

234 marinum model. In addition to the power of the zebrafish model, other fish models of M. 

235 marinum include the goldfish allowing added flexibility for examination of responding 

236 leukocyte populations and their antimicrobial functional responses ex vivo as well as in 

237 vivo using adult fish (Grayfer et al. 2011; Hodgkinson et al. 2012;(Grayfer et al., 2014). 

238
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239 Mycobacterium abscessus

240 The success of the zebrafish/Mm model has made zebrafish an attractive model 

241 for other infectious diseases, and these include non-tuberculous mycobacterial diseases. 

242 Mycobacterium abscessus is an important emerging human pathogen and is especially 

243 associated with cystic fibrosis patients (Jonsson et al., 2007). An embryonic zebrafish 

244 model of M. abscessus has helped to shed light on the innate immune mechanisms behind 

245 the increased severity of a rough variant compared to the less sever smooth variant. These 

246 distinct morphotypes have also been shown to contribute to different stages of infection 

247 and display differential capacity to activate and respond to phagocyte antimicrobial 

248 mechanisms (Malcolm et al., 2018). The rough morphotype also has a propensity to form 

249 cords, large areas of extracellular bacteria too large to be phagocytosed by macrophages 

250 or neutrophils. This cording leads to abscess formation, an important physiopathology of 

251 M. abscessus infection, leading to greater larval death (Bernut et al., 2014). Additional 

252 features of this important emerging mycobacterial disease including progression and fate 

253 of Mabs infection, host and pathogen modulators of disease severity, and developing 

254 opportunities for therapeutic intervention have recently been reviewed (Bernut et al., 

255 2017).

256

257 Mycobacterium leprae

258 Recently, a Mycobacterium leprae zebrafish model has been established to 

259 understand the pathophysiology and the interplay between innate and adaptive immune 

260 components in leprosy disease (Madigan et al., 2017b). M. leprae, is unique amongst 

261 mycobacteria in that it causes peripheral neuropathy, leading to the devastating paralysis 

262 and deformities associated with the disease. The initial nerve damage is caused by 

263 macrophages activated through M. leprae-specific phenolic glycolipid 1 (PGL-1), rather 

264 than neural interactions with the bacteria itself, highlighting a potential novel future 

265 treatment opportunity (Madigan et al., 2017a). 

266

267 EARLY INFECTION EVENTS

268 Recognition
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269 Following inhalation of M. tuberculosis in humans, a variety of host phagocytes 

270 localize to the site of infection, including resident macrophages, dendritic cells and 

271 recruited neutrophils (Schlesinger, 1996). Host recognition of mycobacteria is mediated 

272 through a number of specific pattern recognition receptors (PRR), Toll like receptors (i.e. 

273 TLR2, TLR4 and TLR9), C-type lectin receptors (dectin-1, mannose receptor, and DC-

274 SIGN) and Nod-like receptors (NLRs) (Berrington and Hawn, 2007; Kleinnijenhuis et al., 

275 2011; Reiling et al., 2008). Not surprisingly, polymorphisms in PRR genes have been 

276 shown to affect recognition of M. tuberculosis, corresponding to a disruption in 

277 recognition events, as well as disease outcome (Caws et al., 2008), and MyD88 and 

278 CARD9, master adaptors for TLRs and NLRs, are essential for host protection to M. 

279 tuberculosis (Kleinnijenhuis et al., 2011; Schlesinger, 1996). Mice deficient in MyD88 

280 lose resistance to M. tuberculosis, marked by reduced IL-12, TNF and Th1 cytokine 

281 production and iNOS expression (Scanga et al., 2004). Similarly, Card9-/- mice have 

282 impaired host resistance to M. tuberculosis and higher bacterial burden (Dorhoi et al., 

283 2010), as well as mice deficient in NOD-2 (Divangahi et al., 2008). Hyper-virulent forms 

284 M. tuberculosis have been demonstrated to augment TLR signalling to their advantage. It 

285 was recently shown that the virulent Beijing (Bj) lineage of M. tuberculosis preferentially 

286 signals through TLR-2 as opposed to TLR-4 that is seen in less virulent strains, leading to 

287 the induction of a less protective cytokine profile (Carmona et al., 2013). 

288 In fish, recognition of M. marinum PAMPs by PRRs can induce the nitrosative 

289 defense mechanism in leukocytes, which is attenuated in M. marinum containing the RD-

290 1 virulence locus (Elks et al., 2014), or in M. marinum absent cell wall phthiocerol 

291 dimycoceroserate (PDIM) lipids (Cambier et al., 2014). These findings emphasize both 

292 the importance of TLRs to initiate appropriate immune function, as well as evasion 

293 techniques that M. marinum possess by disruption of these interactions. Impairment in 

294 MyD88 of zebrafish can also accelerate granuloma formation (van der Vaart et al., 2012), 

295 although this is likely also due to the loss of IL-1 signalling, which is also MyD88 

296 dependant. Damaged host molecules have also been shown to be important to 

297 antimycobacterial immunity in fish, where TLRs in zebrafish have been shown to 

298 mediate autophagy by binding DNA damage-regulated autophagy modulator (DRAM1) 

299 (Meijer and van der Vaart, 2014), demonstrating the importance of TLR signalling in 
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300 later stages of infection. The implication of NLR signalling has also been suggested in 

301 expression studies of goldfish primary kidney leukocytes following stimulation with M. 

302 marinum (Xie et al., 2013).

303

304 Early regulation of cytokine production

305 Early recognition of mycobacterial PAMPs by mammalian PRRs results in the 

306 production of a number of cytokines, including tumour necrosis factor (TNF), interferon 

307 (IFN)-, and IL-1 family cytokines (IL-1, IL-1, IL-18 and IL-33), IL-12, IL-17 and IL-

308 23. Orthologous cytokines of the fish have also been studied in acute mycobacterial 

309 infections, although not extensively. Evaluation of cytokine gene expression following 

310 BCG vaccination in Japanese medaka has shown early increases in IL-1, IL-6, IFN- 

311 and TNF, akin to mammalian observations. Similar responses have been observed in 

312 goldfish and adult zebrafish (Berrington and Hawn, 2007; Reiling et al., 2008; Yang et 

313 al., 2012a). 

314 Among the cytokines participating in these responses, TNF has long been 

315 recognized as critical for protection against mycobacterial infection. The importance 

316 of TNF signaling was first revealed by blocking with anti-TNF receptor antibodies, 

317 which increased bacillary load within the granuloma and expedited host death 

318 (Bean et al., 1999; Flynn and Chan, 2001). Moreover, interference with TNF 

319 signaling during latent infection resulted in reactivation, suggesting an important 

320 role in maintaining a latency programme and fending off active disease (Botha and 

321 Ryffel, 2003; Chakravarty et al., 2008; Mohanty et al., 2015). Impaired TNF function 

322 in mycobacterial infection reduces iNOS and increases IL-10 production, while IFN- 

323 and IL-12 remain unchanged (Mohan et al., 2001). It has been suggested that TNF is 

324 required for the generation and maintenance of granulomas (Bean et al., 1999; 

325 Chakravarty et al., 2008), although this has been shown to not necessarily be the 

326 case, where various infection models have demonstrated granuloma formation in 

327 the absence of TNF (Flynn and Chan, 2001; Iliopoulos et al., 2006; Lin et al., 2010).

328 Experiments using goldfish and zebrafish have revealed the importance of a 

329 balanced TNF response in the control of mycobacterial infection. Similar to 

330 mammalian models, TNF induces a mycobacterial killing response by stimulating 
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331 effector RNS and ROS in macrophages (Grayfer et al., 2011; Roca and Ramakrishnan, 

332 2013). TNF is induced in early infection events in zebrafish, leading to restriction of 

333 the growth of M. marinum (Clay et al., 2007). Unsurprisingly, morpholino 

334 knockdown of TNF receptor (TNFR) led to increased bacterial growth and 

335 decreased containment (Clay et al., 2008), although hyper-expression of TNF is also 

336 unfavorable to the host, enhancing inflammation and necrosis (Roca and 

337 Ramakrishnan, 2013; Tobin et al., 2012). The temporal duality in outcome of TNF 

338 signaling has been clearly described in the zebrafish system (Roca and 

339 Ramakrishnan, 2013). Interestingly, chemical inhibition of necrosis in high TNF fish 

340 have been shown to uncouple the positive and negative effects and is a possible 

341 therapeutic approach for treatment of TB.

342

343 PHAGOCYTOSIS ANTIMICROBIAL RESPONSES

344 Internalization of mycobacterial bacilli by responding phagocytes is mediated by 

345 mannose, complement, and scavenger receptors (Kleinnijenhuis et al., 2011). Following 

346 internalization, mycobacteria are either neutralized by activated phagocytes (through the 

347 respiratory burst, nitric oxide production, or phagolysosomal events), or bacteria may 

348 persist within the phagocyte (Castaneda-Delgado et al., 2010; Fabri et al., 2011). Evasion 

349 of host effector responses can result in latent infection or acute, active disease (Frieden et 

350 al., 2003). Generation of an appropriate immune response during early events play a 

351 critical role in determining the fate of infection, either through protective innate immunity 

352 or adaptive responses (Frieden et al., 2003).

353 The cellular interactions between host leukocytes and M. marinum have been well 

354 documented early during fish infection. In the zebrafish embryo model transparency 

355 enables visualization of these interactions. Similar to mammalian models, resident fish 

356 macrophages readily internalize M. marinum (Davis et al., 2002) and neutrophils rapidly 

357 migrate to the site of infection and uptake the pathogen (Abadie et al., 2005; Clay et al., 

358 2007), although neutrophil phagocytosis of M. marinum is largely dependent on the site 

359 of infection (Yang et al., 2012a). 

360

361 Phagosome maturation
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362 Pathogenic mycobacteria have evolved a number of evasion strategies to subvert 

363 the hostile environment following professional phagocytic internalization. Pathogenic 

364 Mycobacterium spp. are particularly adept at interfering with the maturation of the 

365 phagosome, restricting acquisition of late endosomal or lysosomal characteristics 

366 (Clemens and Horwitz, 1996; Sturgill-Koszycki et al., 1994). In mammals, a number of 

367 mycobacterial factors have been identified that interfere with phagosomal maturation and 

368 lysosomal fusion. The mycobacterial cell wall lipid phtiocerol dimycocerosates (PDIM) 

369 contributes to host cell entry through receptor-dependant phagocytosis, and also impairs 

370 phagosome maturation and acidification, compared to PDIM mutants (Astarie-Dequeker 

371 et al., 2009; Pethe et al., 2004). Trehalose 6,6’-Dimycolate (TDM) and 

372 lipoarabinomannan (LAM) have also been shown to play an important role in arresting of 

373 normal phagosome processing (Axelrod et al., 2008; Welin et al., 2008). More recent 

374 findings suggest pathogenic mycobacteria can escape the phagosome by translocating to 

375 the cytosol, although this may only occur at later stages in infection at the level of the 

376 granuloma (Bafica et al., 2005). 

377 M. marinum infection of teleost models corroborate interference with phagosome 

378 maturation findings described above. Circumvention of the phagosome and lysosome has 

379 been demonstrated by M. marinum in trout and carp macrophages (Barker et al., 1997; 

380 El-Etr et al., 2001), and the pathogen has also been shown to localize in non-acidified 

381 phagosomes (El-Etr et al., 2001). Most recently, it has also been shown that M. marinum 

382 are able to survive and grow within the phagolysosomal compartment, albeit at slower 

383 growth rates, through action of the virulence determinant MarP (Levitte et al., 2016).

384

385 Respiratory burst

386 The fate of internalized particles depends heavily on the activation state of the 

387 phagocyte. Increased risk of mycobacterial diseases is observed in humans with chronic 

388 granulomatous disease, where defective NADPH oxidase is incapable of producing ROS 

389 in phagocytes (Deffert et al., 2014). However, controversy over the role of ROS exists, as 

390 it has been shown that mice deficient in NOX2 are relatively resistant to mycobacterial 

391 infection (Adams et al., 1997; Cooper et al., 2000; Jung et al., 2002). M. tuberculosis 

392 possesses a number of resistance mechanisms for neutralizing reactive oxygen products, 
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393 including katG catalase-peroxidase, an enzyme that neutralizes H2O2 into H2O and O2. M. 

394 tuberculosis katG mutants (MtbkatG) cannot grow in wildtype and iNOS-/- macrophages, 

395 but grow inside NOX2 deficient mice (gp91phox-/-) (Ng et al., 2004). Additionally, M. 

396 tuberculosis possesses two superoxide dismutase genes, sodA and sodC, which catalyze 

397 the conversion of superoxide anions to hydrogen peroxide and water. These enzymes are 

398 critical for virulence in several other pathogens, including Helicobacter pylori, 

399 Salmonella typhimurium and Yersinia enterocolitica (Ehrt and Schnappinger, 2009). 

400 Deletion of sodC has led to increased susceptibility to superoxide and killing in IFN--

401 activated, but not TLR-activated murine macrophages, which may correspond to 

402 functional importance at later stages of infection (Piddington et al., 2001). SodA seems to 

403 play a complementary role to SodC, and it has been shown to protect against ROS in 

404 TLR-activated macrophages during infection (Dussurget et al., 2001), where SodA 

405 mutants were attenuated in mouse infection models (Edwards et al., 2001). 

406 Fish possess orthologous NADPH oxidase machinery and are similarly capable in 

407 producing toxic reactive oxygen intermediates from both TLR and cytokine activation 

408 (Grayfer et al., 2014). In vitro and ex vivo studies of M. marinum in the goldfish have 

409 shown attenuation of IFN- and TNF- activated ROS production by kidney 

410 macrophages (Grayfer et al., 2011; Hodgkinson et al., 2012). In the zebrafish model, ROS 

411 in macrophages has been shown to kill intracellular M. marinum, although excessive 

412 activation of infected macrophages by TNF led to induction of programmed necrosis 

413 (necroptosis) resulting in the release of bacteria into the extracellular milieu, which is 

414 more growth permissive (Roca and Ramakrishnan, 2013). More recently, M. marinum 

415 cell wall component phosphoribosyltransferase has been shown to enhance bacterial 

416 survival by inhibition of oxidative stress and autophagy pathways (Mohanty et al., 2015). 

417 These findings highlight the importance of fine-tuning the regulation of ROS, where both 

418 inhibition and excessive activation enhances bacterial growth and disease pathology. 

419

420 Nitric oxide antimicrobial response

421 In addition to respiratory burst, activated macrophages express inducible nitric 

422 oxide synthase (iNOS/NOS2), enzymes that catalyzes the conversion of L-arginine to L-

423 citruline, resulting in the production of a potent antimicrobial compound, NO 



15

424 (MacMicking et al., 1997). iNOS has become the hallmark of classically activated 

425 macrophages, which are effector cells with a “kill” phenotype, as opposed to the 

426 homeostatic “repair phenotype of alternatively activated macrophages (Gordon, 2003). 

427 Stimulation of macrophages with PAMPs (e.g. LPS) or inflammatory cytokines (e.g. 

428 IFN-) leads to activation of iNOS and production of large amounts of nitrate (NO2
-) and 

429 nitrite (NO3
-), known as reactive nitrogen species (RNS) (Stuehr and Marletta, 1987). 

430 Parallel production of superoxide and NO can also result in the formation of peroxynitrite 

431 (ONOO-), a potent antiparasitic/antimicrobial agent (Henard and Vazquez-Torres, 2011). 

432 Like ROS, RNS can modify DNA, proteins and lipids, resulting in antimicrobial function, 

433 but can also damage host cells (Yang et al., 2009). Activation of iNOS is essential for the 

434 destruction of intracellular pathogens, including mycobacteria (Adams et al., 1991; Schon 

435 et al., 2004). Indeed, iNOS knockout studies have demonstrated uncontrolled bacterial 

436 replication, dissemination, tissue destruction and mortality (MacMicking et al., 1997). 

437 Members of the M. tuberculosis complex possess a number of virulence factors to 

438 combat host RNS. Exposure to NO can trigger a transition to dormancy, leading to 

439 persistence of infection (Voskuil et al., 2003; Wayne and Sohaskey, 2001). The sensing 

440 of NO is accomplished through a three-component dormancy survival regulator 

441 (DosR/S/T), which shifts the bacteria from aerobic to anaerobic metabolism to enter 

442 dormancy (Green et al., 2014). Other virulence factors involved in denitrification include 

443 TpX, a thiol peroxidase that reduces peroxynitrite (Jaeger et al., 2004), AhpC, a catalase 

444 peroxidase (Sherman et al., 1999), PknE, a serine/threonine kinase E, an inhibitor of NO-

445 mediated apoptosis (Jayakumar et al., 2008). Forrellad et al. recently published a 

446 comprehensive review on mycobacterial virulence factors that combat oxidative and 

447 nitrosative stress (Forrellad et al., 2013).

448 Infections of M. marinum in fish have yielded corroborative insights into the role 

449 of iNOS in mycobacterial immunity. In zebrafish, TLR (MyD88 dependent) recognition 

450 of M. marinum resulted in NO production, although bacteria containing the RD1 locus, 

451 were capable of attenuating the response (Elks et al., 2014). Interestingly, M. marinum 

452 has recently been shown to preferentially recruit permissive macrophage phenotypes 

453 during early infection, which do not produce nitric oxide upon internalization (Cambier et 

454 al., 2014). This evasive “screening” of macrophages is accomplished using cell-surface-
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455 associated phthiocerol dimycocerosate (PDIM) lipids which mask underlying PAMPs and 

456 recruit permissive macrophages through a host chemokine receptor 2 (CCR2)-mediated 

457 pathway (Cambier et al., 2014). In PDIM deficient M. marinum, TLRs stimulation leads 

458 to recruitment of macrophages with microbicidal potential through nitrosative 

459 mechanisms. Further reports using the zebrafish model demonstrated that the 

460 enhancement of iNOS reduced bacterial burden, while impaired iNOS increases host 

461 susceptibility, and the Dos dormancy survival regulon is also seemingly conserved (Chen 

462 et al., 2016b). In vitro and ex vivo dampening of cytokine-induced nitric oxide production 

463 has also been observed in goldfish macrophages, suggesting conserved mechanisms for 

464 attenuating iNOS function in teleosts (Grayfer et al., 2011; Hodgkinson et al., 2012). 

465

466 Tryptophan degradation

467 The IFN-γ-elicited expression of macrophage indoleamine 2,3-dioxygenase (IDO) 

468 is another marker of classical macrophage polarization, which oxidizes L-tryptophan to 

469 N-formylkynurenine (Taylor and Feng, 1991). Expression of IDO can be induced by 

470 either IFN or TLR pathways, and is generally accepted to deprive supply of tryptophan to 

471 pathogens, limiting growth and persistence (Green et al., 2014; Wayne and Sohaskey, 

472 2001); (Wang et al., 2014). The catabolism of L-tryptophan also results in production of 

473 metabolites known as kynurenines, which promote a broad spectrum of downstream 

474 effects, including immunotolerance and suppression of T cell proliferation (Grohmann 

475 and Bronte, 2010). 

476 Despite the presence of the IDO-mediated approach to pathogen control, 

477 pathogenic mycobacteria are capable of de novo L-tryptophan biosynthesis, rendering a 

478 deprivation strategy by IDO ineffective. In fact, increased IDO expression correlates with 

479 severity of pathology in M. tuberculosis infected individuals (Plain et al., 2011). M. 

480 tuberculosis actively promotes host IDO production and suppression of IDO reduces 

481 bacterial burden, pathology, and clinical signs of TB disease, leading to increased host 

482 survival (Gautam et al., 2018). Downstream effects of kynurenine metabolite production 

483 are also likely to interfere with T cell activation, a critical component of anti-

484 mycobacterial immunity. Thus, interference of IDO has been proposed as a potential 
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485 therapeutic target, in addition to the L-tryptophan biosynthesis machinery in 

486 mycobacteria, anthranilate synthase (TrpE) (Warner, 2015; Zhang et al., 2013). 

487 Fish IDO orthologues (proto-IDOs) appear to have less efficient tryptophan 

488 degradative capacities as compared to the mammalian IDOs, suggesting the possible 

489 presence of alternative fish IDO substrates that are yet to be identified (Yuasa et al., 

490 2007). To date, only one expression analysis of proto-IDO orthologues has been 

491 presented in the context of mycobacterial infection. Goldfish macrophages infected with 

492 M. marinum up-regulated proto-IDO gene expression and exposure of macrophages to 

493 live M. marinum in vitro and induced substantially greater proto-IDO mRNA levels than 

494 the heat-killed bacteria, suggesting a possibly similar tryptophan metabolism strategy 

495 seen in mammalian hosts pathogen infection models (Grayfer et al., 2011). Similarly, our 

496 group has observed large increases in IDO expression levels in M. marinum infected 

497 spleen and kidney tissue.

498

499 MODULATION OF MACROPHAGE SURVIVAL

500 Macrophage apoptosis

501 Regulated cell death by infected cells is an important mechanism to contain 

502 pathogen replication and spread. The importance of apoptosis to an effective immune 

503 response is underlined by the various pathogenic virulence factors that inhibit the process 

504 (Best, 2008). Apoptosis in M. tuberculosis infected macrophages is generally regarded as 

505 a host protective response, where intact bacteria encased in plasma membrane are 

506 internalized by phagocytes in a process called efferocytosis (Martin et al., 2012). 

507 Sequestration of mycobacteria inside of the apoptotic body is thought to disrupt the 

508 interference of phagolysosomal fusion following phagocytosis, thereby delivering the 

509 bacilli to lysosomal components and facilitating degradation (Kagina et al., 2010). 

510 Apoptosis was first recognized as an important line of defense against mycobacteria 

511 when attenuated M. tuberculosis strains such as M tuberculosis H37Ra exhibited reduced 

512 viability and increased apoptotic turnover (Keane et al., 2000), whereas virulent M. 

513 tuberculosis strains induced less apoptosis and persisted intracellularly (Kelly et al., 

514 2008). Pro-apoptotic mutants have led to the discovery of virulence factors that impair 

515 apoptotic function, including the secA2 gene, a secretion system that secretes 
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516 mycobacterial superoxide dismutase, a strong superoxide scavenger (Hinchey et al., 

517 2007). Contradictory reports suggest apoptosis can also promote mycobacterial spread 

518 (Early et al., 2011) although this is likely due to contrasting stages of infection, 

519 species/strain differences and immunological context.

520 Fish models have also demonstrated the importance of apoptosis in the control of 

521 mycobacterial infection. Recently, PDIM deficient M. marinum was shown to increase 

522 the level of apoptosis in early infection compare to wild type bacteria in the zebrafish 

523 embryo model, although these roles were reversed in the granuloma (Huang et al., 2016). 

524 The increased apoptosis in the granuloma leading to the expansion of infected 

525 macrophages has previously been demonstrated in zebrafish larval granulomas possessing 

526 the RD1 virulence locus (Davis and Ramakrishnan, 2009), reiterating the immunological 

527 context of these processes as paramount. 

528

529 Macrophage necrosis 

530 Recent insights into death by necrosis has added a nuanced view of what was 

531 originally considered ‘un-controlled cell death’. This original definition holds as partially 

532 true, where unfavorable chemical physical conditions results in unregulated cell death. 

533 However, a number of controlled states of necrosis have been defined (Feoktistova and 

534 Leverkus, 2014). The means of mycobacterial control by necrotic cell death is 

535 complicated. The well-acknowledged role of TNF for host defense has also been shown 

536 to exacerbate disease outcomes through programmed necrosis, by excessive ROS 

537 production (Roca and Ramakrishnan, 2013; Tobin et al., 2012; Tobin et al., 2010). 

538 Eicosanoids have been shown to regulate the axis of cell death, where induction of 

539 lipoxin (LXA4) and inhibition of prostaglandin (PGE2) by virulent strains of M. 

540 tuberculosis led to programmed necrosis and mycobacterial spread. Mice deficient in 

541 PGE2 are more susceptible to mycobacterial infection due to enhanced necrosis, while 

542 LXA4 mutations enhance apoptotic response, leading to less susceptibility (Divangahi et 

543 al., 2010).

544 Comparative models have been critical in advancing our understanding of necrotic 

545 cell death with regards to mycobacterial disease, and caseating necrosis has been 

546 observed in zebrafish, goldfish and tree frog granulomas, commensurate with heightened 
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547 pathology. The discovery of polymorphisms in ltah (leukotriene A4 hydrolase) was 

548 originally done in the zebrafish, and was later demonstrated in susceptible human 

549 populations (Herb et al., 2008; Tobin et al., 2010). Host mechanisms of control 

550 influencing the development of a necrotic core in the granuloma have been elegantly 

551 demonstrated in the zebrafish model. Restriction of macrophage recruitment to the 

552 granuloma resulted in necrosis of core macrophages, and was highlighted as a tipping 

553 point where fresh macrophage recruitment was exceeded by the demand within the 

554 granuloma (Pagan and Ramakrishnan, 2015). Virulence products of the ESX-5 secretion 

555 system have also been identified as influencers the necrotic/apoptotic balance in fish, 

556 where knockouts shift drive a hyper-virulent necrotic response in the center of the 

557 granuloma, though the mechanism underpinning this observation is unclear 

558 (Weerdenburg Eveline et al., 2012). 

559

560 NEUTROPHILS

561 The roles of neutrophils during mycobacterial infection remain controversial, 

562 although neutrophils are infected by mycobacteria, and are the predominant infected cell 

563 type during active tuberculosis (Eum et al., 2010; Francis et al., 2014). Numerous reports 

564 suggest a negative role for neutrophils in tuberculosis, where respiratory failure and death 

565 are associated with elevated blood neutrophil levels (Barnes et al., 1988; Lowe et al., 

566 2013). Further reports have shown neutrophils to facilitate delivery of mycobacteria to 

567 dendritic cells, thereby aiding in the subsequent activation of CD4+ T cells (Blomgran et 

568 al., 2012). Similar to what is seen in macrophages, apoptosis of neutrophils is inhibited 

569 by pathogenic mycobacteria, leading to the delayed priming of CD4+ T cells, 

570 concomitantly resulting in a higher bacterial load per cell (Blomgran et al., 2012). The 

571 contribution to pathology and/or host protection is likely due to host/pathogen genetic 

572 factors, as well as the stage of disease and immune context. Indeed, early events that 

573 accompany infiltration of neutrophils to the infection site influence activation states 

574 differently that at later stages in the granuloma. Early protective effects of neutrophils has 

575 been observed, while depletion of neutrophils at later stages of infection has been shown 

576 to reduce the bacterial load (Zhang et al., 2009). Therefore, it may be possible that early 

577 protective responses and promotion of T cell activation by neutrophils renders later 
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578 immune contribution unnecessary, and disruption of this tightly controlled process may 

579 lead to neutrophil pathology at later disease stages. Indeed, it has been suggested that 

580 neutrophilia during active disease is an indication of failed Th1 immunity (Nandi and 

581 Behar, 2011). 

582 In fish models, recent interest in neutrophils in M. marinum infection has helped 

583 to underline their importance in protection. Initially, it was thought that macrophages but 

584 not neutrophils internalize M. marinum, as this was observed following injection of 

585 bacilli into the bloodstream or hindbrain of zebrafish embryos (Yang et al., 2012a). 

586 Subsequent reports showed chemotaxis and internalization of M. marinum by primary 

587 goldfish neutrophils, as well as changes to pro-inflammatory status and killing capacity of 

588 these adult teleost neutrophil populations (Hodgkinson et al., 2015). The survival of 

589 intracellular mycobacteria was significantly reduced in activated neutrophils. Similarly, 

590 in zebrafish internalization of M. marinum by neutrophils in subcutaneous infection 

591 studies suggested that site specificity of infection exists, and is more likely to reflect the 

592 natural role for neutrophils in early infection (Hosseini et al., 2016). Further, a recent 

593 report in zebrafish using confocal laser scanning methods illustrated that neutrophils may 

594 also contribute more to the dissemination of bacteria than macrophages, due to their high 

595 mobility post infection (Hosseini et al., 2016). Clarification of the role of neutrophils in 

596 early infection has been greatly aided in the zebrafish model, where death by bacteremia 

597 is associated with neutropenia, further suggesting a protective response by neutrophils 

598 (Belon et al., 2014). This is corroborated in transgenic zebrafish expressing truncated 

599 chemokine receptor Cxcr4 leading to retention of neutrophils in hematopoietic 

600 compartments and an increase in the bacterial burden (Yang et al., 2012a). Interestingly, 

601 enhancing nitric oxide production of neutrophils prior to infection by manipulation of 

602 hypoxia-inducible factor (Hif-) signaling mediated a protective response, an effect 

603 dependent on Il-1 production (Elks et al., 2013; Ogrysko et al., 2018). At the granuloma, 

604 neutrophils have been shown to internalize apoptotic bodies of macrophages, scavenging 

605 and killing internalized bacilli via oxidative mechanisms (Hosseini et al., 2016; Yang et 

606 al., 2012a). In this manner, neutrophils play an important protective role at the later 

607 stages of infection in fish models.

608
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609 CD4+ T CELLS 

610 Th1

611 Adaptive immunity is first detectable between 3-8 weeks post mycobacterial 

612 infection (Jasenosky Luke et al., 2015), which is widely accepted as being delayed 

613 compared to other bacterial infections (Urdahl et al., 2011; Winslow et al., 2008). This 

614 adaptive response is highly dependent on T helper cells, although the evidence is highly 

615 correlative, as suggested by the increased susceptibility to TB in HIV coinfection 

616 (Cooper, 2009). Following initial infection and internalization events, antigen presenting 

617 cells, predominantly dendritic cells, traffic to a nearby lymph node and stimulate CD4+ T 

618 cell expansion, although inhibition of MHC class II peptide presentation by M. 

619 tuberculosis has been observed as a proposed evasion mechanism (Yang et al., 2012a). 

620 The delay in T cell expansion may in part be due to delayed migration of dendritic cells 

621 that may internalize apoptotic bodies of infected macrophages or neutrophils (Blomgran 

622 and Ernst, 2011; Divangahi et al., 2010). However, once migrated, infected dendritic cells 

623 are capable of releasing intact bacterial antigens that are taken up and presented by the 

624 uninfected dendritic cells, optimizing T cell priming (Srivastava and Ernst, 2014). 

625 Following DC migration and T cell activation, further delays in effector function has 

626 been observed. Interestingly, even fully differentiated pathogen-specific Th1 cells that are 

627 transferred to a naïve host prior to infection do not provide protection against M. 

628 tuberculosis for 7 days post infection (Gallegos et al., 2008), demonstrating that 

629 following T cell activation there is inhibition of movement and downstream effects.

630 Antigen-driven differentiation of T cells results in the capacity of CD4+ (and to a 

631 lesser extend CD8+) to produce essential Th1 cytokines, particularly IFN-, which is well 

632 established in protection against mycobacterial pathogens (Rossouw et al., 2003). These 

633 cytokines are critical for activation of the antimycobacterial function of macrophages, 

634 including phagosome maturation, reactive nitrogen intermediates and antigen 

635 presentation (described above) (Flynn et al., 2011; Weiss and Schaible, 2015). Indeed, 

636 cessation of bacterial growth correlates strongly to the arrival of CD4+ T cells to the 

637 infection site or granuloma, although the mechanisms have yet to be fully defined. 

638 Evidence for the protective capacity of multifunctional CD4+ T cells, subtypes that 

639 produce IL-2, IFN- and TNF, suggest the balanced combination of cytokine levels to 
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640 be an important factor (Darrah et al., 2007). Development of multifunctional Th cells 

641 seems to depend heavily on antigen presentation of dendritic cells, as well as proper 

642 cytokine stimulation of a well-orchestrated innate immune response, but maintenance of 

643 the response is not fully elucidated. 

644 The adaptive components of the immune response to mycobacterial infection is 

645 not well established in fish. This is partially owing to the relative lack of reagents in 

646 teleost systems, although T cells (TcR and CD4-related genes), as well as B cells have 

647 been identified in bony fish (Castro et al., 2013a; Castro et al., 2013b). Recently, antigen 

648 induced cytokine production of CD4+ T cells was observed in adult zebrafish, where M. 

649 marinum infected fish showed a collection of Th cells surrounding the granuloma, similar 

650 to that of mammalian infection models (Yoon et al., 2015). Importance of T cells for the 

651 control of mycobacterial infection was corroborated in fish, where depletion of CD4+ T 

652 cells corresponded to granuloma disruption and dissemination of M. marinum 

653 (Myllymaki et al., 2018). However, most of the research in the zebrafish has focused on 

654 the embryonic system which predates development of lymphocytes. Correlative 

655 importance of Th cells in mycobacterial control has been assessed with regards to IFN- 

656 expression. Increases in IFN- mRNA expression has been observed in adult goldfish and 

657 zebrafish in vivo (Hodgkinson et al., 2012; Oksanen et al., 2013; Yoon et al., 2015) and in 

658 goldfish primary cultures (Grayfer et al., 2011). IFN--primed macrophage effector 

659 function was also shown to be attenuated by M. marinum, suggesting effector evasion 

660 even with IFN- stimulation (Grayfer et al., 2011).

661

662 Th2

663 CD4+ T cells can functionally polarize to Th2 cells, which generally produce IL-

664 4, IL-5, IL-10, and IL-13, stimulating a strong antibody response and inhibiting 

665 antimicrobial macrophage activation (Romagnani, 1999). Because Th1 responses are 

666 generally regarded as host protective, Th2 responses, known to cross-regulate and inhibit 

667 Th1, may be counterproductive in mycobacterial control. Relatively little research has 

668 been conducted with regards to Th2 responses in mycobacterial infections, although 

669 chronic helminth infection appears to decrease immunogenic response of BCG (Elias et 

670 al., 2008) and impairs a productive Th1 response in concurrent M. tuberculosis infections 
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671 (Babu et al., 2009; Resende Co et al., 2007). Interestingly, IL-4R-/- deficient mice 

672 infected with a helminth, exhibited improved ability to combat mycobacterial infection, 

673 suggesting that a possible mechanism of interference is the alternative activation of 

674 macrophages, a functional state that naturally down-regulates iNOS function (Potian et 

675 al., 2011).

676 Fish possess a Th2/M2 functional state in response to parasitic infection, which 

677 has been exhibited by increases in arginase activity in macrophages (Joerink et al., 2006). 

678 Fish also have Th2-type cytokines capable of a homologous regulatory and anti-

679 inflammatory role, as has been demonstrated in goldfish macrophages exposed to 

680 recombinant forms of IL-4 (Hodgkinson et al., 2017). Zebrafish Th2-like cells have been 

681 characterized in response to M. marinum infections (Yoon et al., 2015), and interestingly, 

682 adequate Th2 gene expression levels are necessary for well-controlled latency 

683 (Hammaran et al., 2014). It is likely the case that the timing and regulation of Th2 

684 response is important in mycobacterial infection as well as containment in fish as well as 

685 mammals.

686

687 Tregs

688 T regulatory cells (Tregs), characterized as CD4+ Foxp3+, are critical in the 

689 regulation of immune responses to self-antigens and in promoting homeostasis. Tregs are 

690 generally immunosuppressive through a number of mechanisms, including cytokine 

691 production (TGF-, IL-10, IL-35), induction of effector cell apoptosis, and increasing 

692 IDO expression (Collison et al., 2007; Gondek et al., 2005; Read et al., 2000). Regulatory 

693 T cells have been shown to accumulate at the lymph node and granuloma at a similar rate 

694 of effector T cells during M. tuberculosis infection in mice (Scott-Browne et al., 2007). 

695 Accumulation of Tregs has also been shown to prevent eradication of M. tuberculosis by 

696 suppressing the Th1 response in an IL-10 independent manner, and where depletion of 

697 Tregs also resulted in reduced bacterial load (Kursar et al., 2007). Despite the likelihood 

698 of an impairment of an effective anti-mycobacterial response, it is still relatively unclear 

699 the role of Tregs in different stages of infection, where they likely aid in minimizing 

700 pathology by controlling inflammation. 
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701 Treg cell markers Foxp3 and Gata3 are present in teleost genomes and Tregs have 

702 been identified as a functionally conserved cell type in puffer fish (Wen et al., 2011), sea 

703 bass (Nunez Ortiz et al., 2014) and zebrafish (Dee et al., 2016; Hui et al., 2017; Kasheta 

704 et al., 2017). A few studies of the contribution of Tregs cells to the immune response to 

705 M. marinum have been undertaken in fish. In adult zebrafish, reactivation of latent M. 

706 marinum infections was correlated with increased foxp3 transcription levels, suggesting a 

707 role for Tregs in this process (Hammaran et al., 2014). Further research is required in 

708 both fish and mammalian model systems to determine the relative contribution of Tregs 

709 to host protection/disease pathology during the course mycobacterial infection. 

710

711 Th17 cells

712 T helper (Th) 17 may play a role in mycobacterial protection, as they are known 

713 to have significant pro-inflammatory effects on intracellular pathogens (Cooper, 2009). In 

714 TB, Th 17 cells have been shown to accumulate at the granuloma, but seem to be 

715 counteracted by IFN- producing CD4+ T cells. This inhibition of IL-17 was shown to 

716 limit the neutrophilic accumulation and survival, which may decrease inflammation and 

717 improve the infection outcome (Nandi and Behar, 2011). Contradictory reports have also 

718 shown the IL-17 response is dispensable in with sufficient IL-12p70 production (Khader 

719 et al., 2005). Still, partial protection has been reported following transfer of antigen-

720 specific Th 17 cells in to naïve hosts (Gallegos et al., 2011). The variety of roles for IL-

721 17 and Th 17 cells is likely due to genetic variability in host and pathogen models, and 

722 more work is necessary to understand the role of Th 17 cells in mycobacterial host 

723 defense. At present, little has been established regarding IL-17 participation in M. 

724 marinum infection, although in zebrafish this has been inversely correlated with increases 

725 in IL-17 expression levels (Ojanen et al., 2015). 

726

727 CD8+ T CELLS

728 Although comparatively less studied, CD8+ T cells have been described during 

729 TB infection. Antigen specific CD8+ T cells are found at the site of active disease but 

730 seem to possess less cytotoxic activity compared with latently infected individuals 

731 (Andersson et al., 2007). Decreases in IFN-+ TNF+ IL-2+ trifunctional CD8+ T cells has 
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732 been observed in active disease states as well as cellular dysfunction in individuals with a 

733 high bacterial load (Day et al., 2011), marked by a higher proportion of pro-apoptotic 

734 markers and diminished proliferative capacity (Day et al., 2014). It has been suggested 

735 that during active disease, M. tuberculosis-specific CD8+ T cells are arrested in an 

736 intermediate point in differentiation with a reduced capacity for cytotoxicity and 

737 proliferation (Jasenosky Luke et al., 2015). Inhibition of T cell function is exacerbated in 

738 TB patients taking anti-TNF therapy for auto-immune disorders (Bruns et al., 2009). This 

739 may mean that impaired upstream activation events, i.e. macrophage of Th1, lead to 

740 arrested CD8+ function. 

741 In fish, T cells express typical markers, including CD8, and have homologous 

742 cytolytic function (Castro et al., 2013). CD8+ activation has been implicated in fish 

743 immunity towards Edwardsiella tarda (Rowe et al., 2014), although to date, there is no 

744 contribution from fish models on the research of CD8+ T cells during mycobacterial 

745 infection. 

746

747 B CELLS

748 B cells and antibody production are vital for a protective response and vaccination 

749 to numerous infectious agents, although their contribution to mycobacterial protection is 

750 not well understood. It was originally conceived that B cells do not contribute 

751 meaningfully toward protection due to the intracellular nature of M. tuberculosis 

752 (Kumararatne, 1997), although they likely play a role beyond what was previously 

753 thought (Maglione Paul and Chan, 2009). B cells have been observed at the granuloma 

754 where they may contribute to host defense (Phuah et al., 2012) and they have been shown 

755 to influence inflammatory progression and bacterial containment (Maglione et al., 2007). 

756 Most recently, antibodies have been implicated in a protective role during mycobacterial 

757 infection via changes to their Fc functional properties (Lu et al., 2016). Individuals with 

758 latent tuberculosis infection displayed functional enhancements including 

759 phagolysosomal maturation, inflammasome activation, and macrophage killing of 

760 intracellular Mycobacterium tuberculosis, when compared to individuals with active 

761 tuberculosis disease (Lu et al., 2016). 
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762 Fish and mammalian B cells share many similarities, including the generation of 

763 hyper-specific antibody repertoires by somatic gene rearrangement, and heavy chain 

764 isotypes IgM and IgD. However, fish possess a unique antibody isotype profile, IgT/IgZ, 

765 and lack IgG/IgE, although the exact isotype picture continues to evolve (Bengten and 

766 Wilson, 2015). Antibody production following infection with M. marinum has been 

767 observed, although a definitive link to host protection is yet to be established (Cui et al., 

768 2010; Pasnik et al., 2003).

769

770 IFN- 

771 It is well established that IFN- is essential for protective function towards 

772 intracellular pathogens, including mycobacteria (Bach et al., 1997). CD4+ Th cells are 

773 the predominant source of IFN- during mycobacterial infection. CD8+ T may also 

774 produce IFN-, although they cannot compensate for a lack of CD4+ cells (Flynn and 

775 Chan, 2001). Transient sources of IFN- from NK cells, NK T cells and  T cells has 

776 also been observed and is thought to tide over the protective response over until adaptive 

777 sources take over, and also seem to be more prominent during infection with hyper 

778 virulent M. tuberculosis infection (Cooper Andrea and Khader Shabaana, 2008). As 

779 previously mentioned, antimicrobial mechanisms of the macrophage are critically 

780 important in eradicating intracellular mycobacteria. IFN- is largely responsible for this 

781 activation following expansion of antigen specific T cells. IFN- exerts numerous 

782 downstream effects through a suite of transcriptional programs (Boehm et al., 1997), 

783 activation of reactive oxygen production and iNOS transcription (MacMicking et al., 

784 1997), autophagy, endosome maturation (Russell et al., 2010), and production of 

785 antimicrobial peptides (Fabri et al., 2011). Mice deficient in IFN- are unable to control 

786 low dose infections of M. tuberculosis, where they fail to produce reactive intermediates 

787 and bacteria replicate unabated (Cooper et al., 1993; Flynn et al., 1993). Similarly, 

788 mutations in cognate receptor IFN-R1 has been implicated in fatal BCG infection 

789 (Jouanguy et al., 1997). Despite the role in controlling infection, IFN- levels are 

790 correlated with the severity of disease, where excessive levels of IFN- are seen in 
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791 patients with severe TB (Verbon et al., 1999), and these levels are reduced following 

792 productive therapy (Tsao et al., 2002).

793 Not surprisingly, interferon signalling is similarly necessary in host protection of 

794 fish towards M. marinum. Expression analysis confirms increases in interferon expression 

795 levels following M. marinum infection in goldfish immune tissues (Hodgkinson et al., 

796 2012) and primary cultures (Grayfer et al., 2011). Interestingly, M. marinum impaired the 

797 IFN- primed respiratory burst and nitric oxide response in cultured leukocytes (Grayfer 

798 et al., 2011). In adult zebrafish, IFN- levels have corresponded to a partially protective 

799 BCG vaccination (Oksanen et al., 2013) as well as iNOS activation (Parikka et al., 2012).

800

801 IL-10

802 IL-10 is produced by a variety of immune cells, including macrophages, 

803 neutrophils, B cells, DCs and T cells (Saraiva and O'Garra, 2010) and provides critical 

804 regulatory feedback of inflammation to prevent immunopathology (Cooper, 2009). 

805 Similar to IFN or TNF, IL-10 can act as a double-edged sword during infection, where 

806 precise control of IL-10 is imperative. Overproduction during mycobacterial infection has 

807 been shown to contribute to chronic infection, while excessive inflammation and 

808 pathology occurs with insufficient production (Saraiva and O'Garra, 2010). Mice 

809 deficient in IL-10  exhibited enhanced protection to mycobacterial infection (Redford et 

810 al., 2010; Roach et al., 2001) and the blocking of IL-10R signalling using antibodies has 

811 resulted in decreased bacterial loads, enhanced T cell proliferation and IFN- production, 

812 and host survival (Beamer et al., 2008). Interference of immune activation by IL-10 is 

813 through a variety of mechanisms, including antigen presentation, limited development of 

814 a Th1 response (and subsequent IFN- production), leading to inhibition of TNF, and 

815 prevention of iNOS expression (Fiorentino et al., 1991; Moore et al., 2001). Accordingly, 

816 mycobacterial pathogens have been shown to dampen host defence by modulating the IL-

817 10 response. Increased IL-10 production was shown to arrest phagosome maturation in 

818 M. tuberculosis infected macrophages, while blocking IL-10 antibodies reversed this 

819 effect (O'Leary et al., 2011). The relative pathogenicity of mycobacterial strains also 

820 seems to correlate with IL-10 production, where hypervirulent strains of TB (HN878), 

821 characterized by the presence of a phenolic glycolipid, have been shown to induce an 
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822 early IL-10 and arginase-1 expression via CD4+CD25+FoxP3+CD223+ regulatory T-

823 cells. Coinfection with complementary strains demonstrate a virulence mechanism 

824 utilized by M. tuberculosis HN878 to exploit host immune systems through induction of 

825 IL-10, which is presumed to be an immune evasion strategy (Reed et al., 2004). Thus, the 

826 data in humans and other mammalian models largely points to IL-10 impairing the ability 

827 to eradicate mycobacteria infection when in excess. Studies in fish, however, have not 

828 reached this same consensus. M. marinum induced expression of IL-10 has been observed 

829 in goldfish primary kidney monocytes and macrophages (Grayfer et al., 2011), although 

830 no apparent increases of IL-10 were observed in spleen or kidney tissues during 

831 infections (Hodgkinson et al., 2012), and introduction of recombinant IL-10 did not alter 

832 the viability of M. marinum within goldfish phagocytes (Hodgkinson et al., 2012). In 

833 zebrafish, IL-10 mutants showed enhanced survival and enhanced interferon gamma 

834 response following chronic M. marinum infection (Harjula et al., 2018).

835

836 MMP9

837 Metalloproteinase 9 (MMP9) has been isolated as a critically important 

838 chemotactic factor for recruiting macrophages and monocytes to the granuloma (Taylor et 

839 al., 2006), and is increased in mice and humans infected with M. tuberculosis (Price et al., 

840 2001; Taylor et al., 2006). Chemical inhibition of MMPs in mice leads to delayed and 

841 smaller granuloma formation (Hernandez-Pando et al., 2000), while heightened levels are 

842 correlated with deverity of disease (Chang et al., 1996).

843 Important findings on the contribution of MMP9 to pathology has been generated 

844 in the zebrafish and been shown to be modulated by an RD-1 factor, ESAT-6. It was 

845 observed that infected cells at the granuloma are not responsible for MMP9 production, 

846 but rather nearby adjacent epithelial cells (Volkman et al., 2010). The stimulation of 

847 MMP9 by epithelial cells is thought to attract naïve macrophages and monocytes while 

848 simultaneously allowing for the dampened antimicrobial response in phagocytes in the 

849 granuloma (Ramakrishnan, 2013). Moreover, these findings in the zebrafish offers 

850 insights as to why granulomas do not typically grow in skeletal muscle or cardiac tissue, 

851 due to the  a lack of neighboring epithelial cells, responsible for MMP9 production. 

852



29

853 LIPID MEDIATORS

854 Balance of the eicosanoids prostaglandin (PGE2) and lipoxin (LXA4) plays a 

855 major role in the outcome of mycobacterial infection. The balance of PGE2 and LXA4 

856 govern whether macrophages undergo apoptosis or necrosis, which is an important 

857 determinant in host protection during infection (Behar et al., 2010). Less virulent 

858 mycobacterial infections, including the BCG vaccine, preferentially increase PGE2, 

859 leading to apoptosis in macrophages and ultimately bacterial containment (Divangahi et 

860 al., 2010). Deficiencies of PGE2 in mice resulted in increased bacterial loads and host 

861 susceptibility (Behar et al., 2011; Chen et al., 2008). In fish, an ltah4 mutant led to 

862 increased LXA4 production resulting in greater host susceptibility to M. marinum 

863 infection (Tobin et al., 2010). Heterozygous polymorphisms in the human LTA4H 

864 promoter were found to be associated with TB severity in Vietnamese patients, 

865 suggesting this could serve as the basis for effective therapies against tuberculosis (Tobin 

866 et al., 2012), although it should be noted that changes in disease outcomes were not 

867 observed in a Russian cohort with the same polymorphisms (Curtis et al., 2011). 

868

869 GRANULOMAS

870 The granuloma is an organized cellular aggregate that can form in the presence of 

871 ineradicable infectious or non-infections stimuli (Kunkel et al., 1989). The most 

872 prominent known cause of granulomas are those generated in response to pathogenic 

873 mycobacterial infections, giving rise to the name “tuberculosis” due to the hallmark 

874 pathology (Ramakrishnan, 2013). Macrophages, the most prominent cell type in 

875 granulomas, can undergo a variety of transformations, including interdigitation with other 

876 macrophages as epithelioid cells, fuse into multinucleated giant cells, or differentiate into 

877 foam cells, which are rich in lipids, thought to be due to the interference of lipid 

878 metabolism by internalized mycobacteria. Finally, they can create caseuous centers 

879 within the granuloma by necrotic cell death, mediated by hypoxia (Hunter, 2011; 

880 Ramakrishnan, 2013). The inner accumulation of macrophages in these heterogeneous 

881 forms, as well as infected neutrophils, are surrounded by lymphocytes and fibroblasts that 

882 create a fibrotic encapsulation (Peters and Ernst, 2003). A wide range of chemokine, 
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883 cytokine and adhesion molecules orchestrate the formation of granulomas, as reviewed in 

884 (Peters and Ernst, 2003).

885 The granuloma was historically viewed as a generally protective feature, whereby 

886 the host could effectively encase material that it could not destroy. This was partly due to 

887 autopsies revealing healed granulomas with no live bacteria, suggesting the granuloma 

888 was effective at controlling infection (Cosma et al., 2003). This is consistent with more 

889 recent identification of phagocyte mediated killing of mycobacteria in early tuberculous 

890 granulomas (Yang et al., 2012). Further, multiple forms of deficiencies, such as IFN-, 

891 TNF, IL-12 or MyD88 prevent the development of an organized granuloma, which 

892 corresponded to hyper-susceptibility (Khader et al., 2006; Mohan et al., 2001), although 

893 these deficiencies affect a number of other critical effector functions, such as macrophage 

894 antimicrobial capacity. Paradoxically, acute disease is also marked by the existence of 

895 granulomas, suggesting that granulomas often fail at controlling bacterial proliferation, 

896 resulting in the alternate view of the granuloma as an immune response that is attempting, 

897 but failing, to control the infection (Ramakrishnan, 2013). 

898 It was previously thought that generation of granulomas requires adaptive 

899 immunity, coinciding with slower growth of mycobacteria (North and Jung, 2004), 

900 however, granuloma formation in zebrafish embryos infected with M. marinum occurs in 

901 the absence of adaptive immune components, which are not present developmentally 

902 (Davis et al., 2002). Visualization studies in zebrafish revealed that nascent granulomas 

903 continually accept infiltrating macrophages and monocytes, responding to a chemokinesis 

904 gradient, into the structure until they are heavily infected (Davis et al., 2002; Davis and 

905 Ramakrishnan, 2009). Macrophage reprogramming that parallel E-cadherin-dependent 

906 mesenchymal-epithelial transitions contribute to organized granuloma formation (Cronan 

907 et al., 2016). Foam-like cells have also been identified using the zebrafish-M. marinum 

908 granuloma model, where transdifferentiation of macrophages appears driven by the 

909 mycobacterial ESX1 pathogenicity locus (Johansen et al., 2018). Vascularization further 

910 supports granuloma formation, driven in part through CXCR4 (Torraca et al., 2017),  

911 angiopoietin-2 (Oehlers et al., 2017), and VEGF (Walton et al., 2018). Interestingly, the 

912 influence of chemokine production has been isolated to the RD-1 locus, where RD-1 

913 deficient M. marinum attract fewer monocytes and macrophages to the nascent 
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914 granuloma, and bacterial expansion is much slower by comparison. Further, the attraction 

915 of macrophages and monocytes to the granuloma by virulent mycobacterial strains results 

916 in fresh phagocytes internalizing dead cell components containing live bacteria, thereby 

917 multiplying the number of host cells (Ramakrishnan, 2013). Therefore, RD-1 deficient 

918 mycobacteria are capable of infecting and multiplying intracellularly, but do not expand 

919 further, likely due to the impaired recruitment of myeloid cells to the granuloma. While 

920 the kinetics of monocyte and macrophage recruitment with regards to RD-1 have not 

921 been confirmed in mammalian models, it appears there may be conserved function in 

922 mice (Egen et al., 2011), and RD-1 deficient mycobacterial infections in mice also 

923 demonstrate poorly formed granuloma structures (Sherman et al., 2004; Swaim et al., 

924 2006).

925 Further characterization of granuloma function has been elucidated in the 

926 zebrafish embryo system, implicating the role of granulomas in disseminating infection. 

927 Until recently, granulomas were viewed as static structures where bacteria were 

928 contained and controlled. Visualization in the zebrafish model demonstrate the ability of 

929 infected macrophages to efflux and seed new granuloma sites, by entering the blood 

930 stream or through tissue parenchyma (Davis and Ramakrishnan, 2009). The zebrafish M. 

931 marinum model has identified that the vascularisation of granulomas both nourishes the 

932 bacteria aiding granuloma growth, but also facilitates dissemination of bacteria from 

933 primary granulomas (Oehlers et al., 2015). Moreover, the onset of granuloma formation 

934 has been shown to accelerate the proliferation of virulent mycobacteria, and attenuated 

935 versions of M. tuberculosis were incapable of initiating the assembly of granulomas, 

936 impairing bacterial growth (Volkman et al., 2004). Together, these data suggest an 

937 alternate role to the granuloma as host protective structures. Validation of embryonic 

938 studies is necessary due to the vast physiological discrepancies of the models, and the 

939 embryo model may not always be the best for elucidating host: pathogen interactions. For 

940 example, M. marinum deficient in ESX-5 was slightly attenuated in zebrafish embryos, 

941 but hyper-virulent in adult zebrafish (Weerdenburg Eveline et al., 2012). 

942

943 CLINICAL IMPLICATIONS OF TELEOST MODELS
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944 Many of the examples of teleost mycobacterial research discussed in this review,  

945 provide relevant and novel insights into the cellular and pathophysiology of 

946 mycobacterial disease. The advantages of these model coupled to the difficulties of 

947 infecting mice with the human pathogen M. tuberculosis, may render teleost models 

948 increasingly important as we look to answer clinically relevant questions in TB.

949 One such clinically relevant question is understanding how TB manifests into life 

950 threatening conditions. Many of the teleost models described in this review, address the 

951 general mechanisms of granuloma formation, but not specifically addressing the location 

952 microenvironment of diseased tissue. Tuberculosis meningitis has high morbidity and 

953 mortality in the developing world, however little is known about how pulmonary TB 

954 spreads from the lung to the brain (Wolzak et al., 2012). A recent zebrafish model of TB 

955 meningitis, using M. marinum in embryo and adult infection, showed that the bacilli are 

956 able to cross the blood brain barrier, either via a Trojan-horse mechanism by carriage in 

957 macrophages, or without the need of macrophage help in an ESX-1 dependent manner 

958 (van Leeuwen et al., 2018; van Leeuwen et al., 2014). Furthermore, there has been a 

959 recent report of using zebrafish as a model for ocular TB, a condition that can cause 

960 vision loss in affected patients (Takaki et al., 2018). These new in vivo models show great 

961 promise in adding to our understanding of the complex nature of TB disease and has the 

962 potential to open up completely novel treatment avenues as more is understood. 

963 A key question in the TB clinic is how to target antibacterial drugs to infected 

964 macrophages, and more importantly, to the centre of granulomas where latent and 

965 potentially drug resistant, bacilli lie. The possibility of using nanoparticle drug delivery 

966 vectors that target macrophages has been explored in the zebrafish M. marinum model. 

967 Liposomes, containing antimycobacterials such as Rifampicin, have been shown to be 

968 efficiently phagocytosed by macrophages in the in vivo zebrafish embryo and are 

969 effective against M. marinum infection (Fenaroli et al., 2014). Furthermore, more 

970 recently, liposomes have been modified to more easily cross endothelial barriers, 

971 allowing larger nanoparticles to be used that remain able to penetrate granulomas but can 

972 deliver larger payloads of drugs. These findings were recapitulated in a murine model of 

973 TB, identifying that the zebrafish is a useful model to study nanoparticle drug delivery in 

974 mammalian systems (Fenaroli et al., 2018). 
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975 Finally, the quest to improve the ageing and relatively ineffective Bacillus 

976 Calmette-Guérin (BCG) vaccine is a key clinical aim. This has been addressed in the 

977 zebrafish by combining the BCG vaccination, (which is modestly protective in an adult 

978 zebrafish M. marinum model), with a DNA vaccine containing Ag85B, ESAT6 and a 

979 resuscitation-related gene RpfE. This combination of antigens boosted the protective 

980 effect of the BCG vaccine (Oksanen et al., 2016). The BCG vaccine neither prevents M. 

981 tuberculosis infection nor inhibits the reactivation of latent TB in humans, and so 

982 alternatives are being actively sought. The zebrafish is a useful screening tool for this 

983 search and some alternative candidate antigens have recently been identified showing 

984 promise for future novel vaccines (Myllymaki et al., 2018; Myllymaki et al., 2017).

985 The increase in study of teleost mycobacterial models makes it seem only a matter 

986 of time before novel treatment strategies discovered in fish enter clinical trials and the 

987 clinic itself rather than being used simply to inform the clinical situation.

988

989 SUMMARY

990 Various immune molecules and mechanisms have been established as relevant for 

991 host protection against mycobacteria while many others are either controversial or poorly 

992 defined. Despite an extensive body of work delineating various facets of immune 

993 mechanisms and host evasion mechanisms, M. tuberculosis remains a deadly pathogen 

994 responsible for millions of deaths annually. Teleost models offer an expanding platform 

995 for understanding of mycobacterial infections and those mechanisms that offer the 

996 greatest potential to enhance host protection.

997
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