13 research outputs found

    Ternary nanocomposite potentiates the lysophosphatidic acid effect on human MG63 osteoblast maturation

    No full text
    Aim: This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Materials & methods: Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP. Results: TNC had no cytotoxic effect on MG63. The addition of TNC to EB1089-FHBP cotreatment enhanced the maturation of MG63, as supported by the greater alkaline phosphatase activity and OPN and OCN gene expression. Conclusion: TNC could serve as a promising carrier for FHBP, opening up possibilities for its application in bone regeneration

    Comparison of MXene and SWCNTs effectiveness for osteoblast differentiation: A preliminary study with MG-63 cells

    No full text
    The exceptional chemical and physical properties of nanomaterials have attracted growing interest in the field of bone tissue engineering. Single walled carbon nanotubes (SWCNTs) and MXenes are two types of unique nanomaterials that have shown promising potential for tissue engineering applications. In this study, we aimed to compare the differentiation capacity of MG-63 cells in the presence of carbon nanotubes (CNTs) and MXene nanomaterials. Methods: The cytotoxic effect of MXene and SWCNTs based nanocomposites was evaluated using the MTS assay. Also, the differentiation potential was evaluated using two models of stimulation. The first model was a co-stimulation of MG-63 s with EB1089 and an analogue of lysophosphatidic acid (LPA), (3S)-1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP). The second model utilized β-glycerophosphate (βGP) and ascorbic acid (ASC). Results: MXene and SWCNTs showed no cytotoxic effect after 48 h of culture. MXene could enhance the maturation of MG-63 in both models of differentiation compared to controls and SWCNTs. Conclusion: The incorporation of MXene into MG-63 cell culture suggests that it has a promising potential as a biomaterial for bone regeneration as it demonstrated improved osteoblast maturation compared to SWCNTs

    Ternary nanocomposite potentiates the lysophosphatidic acid effect on human osteoblast (MG63) maturation - supplementary data

    No full text
    Aim: This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Materials & methods: Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP. Results: TNC had no cytotoxic effect onMG63. The addition of TNC to EB1089-FHBP cotreatment enhanced the maturation of MG63, as supported by the greater alkaline phosphatase activity and OPN and OCN gene expression. Conclusion: TNC could serve as a promising carrier for FHBP, opening up possibilities for its application in bone regeneration.Plain language summary: Nanoparticles (NPs) are often used in medicine because they have certain benefits over traditional drugs, such as increased delivery. Multiple NPs can be combined into hybrid NPs called nanocomplexes, which can have many positive effects. One application of nanomedicine is to encourage the repair of certain body tissues such as bones. Encouraging stem cells to differentiate into bone cells and immature bone cells to mature is key in this process. This study made a ternary nanocomplex (TNC), meaning it was comprised of three NPs. This TNC was designed to deliver a drug called (3S)1-fluoro- 3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), which has been shown to encourage the maturation and development of osteoblasts, a type of bone cell. The TNC was made up of silver NPs, which can kill bacteria; reduced graphene oxide, which enhances the production of bone cells; and titanium dioxide, which has shown effectiveness in wound healing and mixed results in bone tissue regeneration. This TNC was tested on a cell line that comes from a type of bone cancer called MG63. The TNC was found to not be toxic to these cells. TNC incorporation into FHBP treatment enhanced the maturation of MG63. This suggests that these TNCs could be an effective treatment to encourage bone repair following joint replacement surgeries.</p

    Diabetic microenvironment deteriorates the regenerative capacities of adipose mesenchymal stromal cells

    No full text
    Abstract Background Type 2 diabetes is an endocrine disorder characterized by compromised insulin sensitivity that eventually leads to overt disease. Adipose stem cells (ASCs) showed promising potency in improving type 2 diabetes and its complications through their immunomodulatory and differentiation capabilities. However, the hyperglycaemia of the diabetic microenvironment may exert a detrimental effect on the functionality of ASCs. Herein, we investigate ASC homeostasis and regenerative potential in the diabetic milieu. Methods We conducted data collection and functional enrichment analysis to investigate the differential gene expression profile of MSCs in the diabetic microenvironment. Next, ASCs were cultured in a medium containing diabetic serum (DS) or normal non-diabetic serum (NS) for six days and one-month periods. Proteomic analysis was carried out, and ASCs were then evaluated for apoptosis, changes in the expression of surface markers and DNA repair genes, intracellular oxidative stress, and differentiation capacity. The crosstalk between the ASCs and the diabetic microenvironment was determined by the expression of pro and anti-inflammatory cytokines and cytokine receptors. Results The enrichment of MSCs differentially expressed genes in diabetes points to an alteration in oxidative stress regulating pathways in MSCs. Next, proteomic analysis of ASCs in DS revealed differentially expressed proteins that are related to enhanced cellular apoptosis, DNA damage and oxidative stress, altered immunomodulatory and differentiation potential. Our experiments confirmed these data and showed that ASCs cultured in DS suffered apoptosis, intracellular oxidative stress, and defective DNA repair. Under diabetic conditions, ASCs also showed compromised osteogenic, adipogenic, and angiogenic differentiation capacities. Both pro- and anti-inflammatory cytokine expression were significantly altered by culture of ASCs in DS denoting defective immunomodulatory potential. Interestingly, ASCs showed induction of antioxidative stress genes and proteins such as SIRT1, TERF1, Clusterin and PKM2. Conclusion We propose that this deterioration in the regenerative function of ASCs is partially mediated by the induced oxidative stress and the diabetic inflammatory milieu. The induction of antioxidative stress factors in ASCs may indicate an adaptation mechanism to the increased oxidative stress in the diabetic microenvironment

    Carbon-dot-loaded CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment

    No full text
    Abstract Water scarcity is now a serious global issue resulting from population growth, water decrease, and pollution. Traditional wastewater treatment plants are insufficient and cannot meet the basic standards of water quality at reasonable cost or processing time. In this paper we report the preparation, characterization and multiple applications of an efficient photocatalytic nanocomposite (CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2/C-dots) synthesized by a layer-by-layer method. Then, the photocatalytic capabilities of the synthesized nanocomposite were extensively-studied against aqueous solutions of chloramine-T trihydrate. In addition, reaction kinetics, degradation mechanism and various parameters affecting the photocatalytic efficiency (nanocomposite dose, chloramine-T initial concentration, and reaction pH) were analyzed in detail. Further, the antimicrobial activities of the prepared nanocomposite were tested and the effect of UV-activation on the antimicrobial abilities of the prepared nanocomposite was analyzed. Finally, a comparison between the antimicrobial abilities of the current nanocomposite and our previously-reported nanocomposite (CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2) had been carried out. Our results revealed that the prepared nanocomposite possessed a high degree of crystallinity, confirmed by XRD, while UV–Vis. recorded an absorption peak at 299 nm. In addition, the prepared nanocomposite possessed BET-surface area of (28.29 ± 0.19 m2/g) with narrow pore size distribution. Moreover, it had semi-spherical morphology, high-purity and an average particle size of (19.0 nm). The photocatalytic degradation efficiency was inversely-proportional to chloramine-T initial concentration and directly proportional to the photocatalyst dose. In addition, basic medium (pH 9) was the best suited for chloramine-T degradation. Moreover, UV-irradiation improved the antimicrobial abilities of the prepared nanocomposite against E. coli, B. cereus, and C. tropicalis after 60 min. The observed antimicrobial abilities (high ZOI, low MIC and more efficient antibiofilm capabilities) were unique compared to our previously-reported nanocomposite. Our work offers significant insights into more efficient water treatment and fosters the ongoing efforts looking at how pollutants degrade the water supply and the disinfection of water-borne pathogenic microorganisms
    corecore