6 research outputs found

    Microbial iron reduction during passive in situ remediation of an acidic mine pit lake mesocosm

    Get PDF
    AbstractFerric iron reduction was studied in a pilot-scale enclosure experiment for passive biological remediation of an acidic mine pit lake in Lusatia, Germany. The metabolic properties of prokaryotes involved in Fe(III) reduction may be important for the outcome of biological remediation, as chemolithotrophic Fe(III) reduction can counteract the desired pH increase, but heterotrophic Fe(III) reduction will provide the necessary Fe(II) for precipitation of sulfide minerals following sulfate reduction. Therefore, vertical profiles of sediment parameters related to iron and sulfur cycling were determined in conjunction with viable counts of different ferric iron-reducing micro-organisms using selective media. Findings were compared to an untreated reference site. The addition of organic matter stimulated ferric iron reduction and sulfate reduction in the enclosure and led to elevated pH and accumulations of ferrous iron and reduced sulfur compounds. Numbers of neutrophilic heterotrophic Fe(III) reducers increased during treatment, those of acidophilic heterotrophic Fe(III) reducers remained similar, and those of acidophilic chemolithotrophic Fe(III) reducers decreased. Zones of ferric iron-reducing activity corresponded well with microbial depth profiles; however, viable counts of neutrophilic or acid-tolerant Fe(III) reducers must have been underestimated based on the corresponding observed activity levels. Ferric iron reduction by chemolithotrophic acidophiles seemed to be of minor importance, so a lowering of pH values due to Fe(III) reducing activity is unlikely

    Water quality and water-rock interaction in the Harz Mountains (Germany)

    Get PDF
    The Harz Mountains, known for ancient silver and base metal mining, are an important drinking water supply region for northern Germany today. The water quality of the Harz Mountains is mainly influenced by atmospheric depositions, water-rock inter- actions and biological activities. Anthropogenic influences are minor. Springs, creeks, lakes and reservoirs have relatively low mineralisation. Measured as specific electrical conductivity, the mineralisation of the different water bodies ranges from about 15 to 650 µS/cm. Only deep springs and mine waters reach higher values. Despite dilution effects due to different rainwater amounts, water-rock interaction can be retraced by the chemical water composition, especially by trace metals and rare earth element concentrations. Examples of water-rock interaction are discussed for granite, greywacke and limestone

    Quarry lakes as part of a fractured rock aquifer

    No full text
    corecore