1,797 research outputs found

    Determination of the degree of reaction of fly ash in blended cement pastes

    Get PDF
    This paper gives a review over methods to determine the degree of reaction for supplementary cementitious materials (SCMs) with focus on Portland cement - fly ash blends only and summarizes and highlights the most important findings which are detailed in a parallel paper published in Materials and Structures. Determination of the extent of the reaction of SCMs in mixtures is complicated for several reasons: (1) the physical presence of SCMs affects the rate and extent of the reaction of the ground clinker component – the so called “filler effect”; (2) SCMs are usually amorphous with complex and varied mineralogy which make them difficult to quantify by many classical techniques such as X-ray diffraction; (3) the rate of reaction of SCMs in a cement blend may be quite different from its rate of reaction in systems containing simply alkali or lime. From this review it is clear that measuring the degree of reaction of SCMs remains challenging. Nevertheless progress has been made in recent years to offer alternatives to the traditional selective dissolution methods. Unfortunately some of these – image analysis and EDS mapping in the scanning electron microscope, and NMR - depend on access to expensive equipment and are time consuming. With regard to fly ashes, NMR seems to be reliable but limited to fly ash with low iron content. New methods with quantitative EDS mapping to segment fly ash particles from the hydrated matrix and to follow the reaction of glass groups of disparate composition separately look very promising, but time consuming. Sources with a high proportion of fine particles will have higher errors due to lower limit of resolution (1-2 μm). Whereas for SCMs which react relatively fast (e.g. slag, calcined clay) the methods based on calorimetry and chemical shrinkage seem promising on a comparative basis, the very low reaction degree of fly ashes before 28 days means that the calorimetry method is not practical. There is a lack of data to assess the usefulness of long term chemical shrinkage measurements. The possibility to quantify the amorphous phase by XRD is promising as this is a widely available and rapid technique which can at the same time give a wealth of additional information on the phases formed. However, the different reaction rates of different glasses in compositionally heterogeneous fly ashes will need to be accounted for and may strongly reduce the accuracy of the profile decomposition method. This paper is the work of working group 2 of the RILEM TC 238-SCM “Hydration and microstructure of concrete with supplementary cementitious materials”

    Well prepared for work? Junior doctors' self-assessment after medical education

    Get PDF
    Background Apart from objective exam results, the overall feeling of preparedness is important for a successful transition process from being a student to becoming a qualified doctor. This study examines the association between self-assessed deficits in medical skills and knowledge and the feeling of preparedness of junior doctors in order to determine which aspects of medical education need to be addressed in more detail in order to improve the quality of this transition phase and in order to increase patient safety. Methods A cohort of 637 doctors with up to two years of clinical work experience was included in this analysis and was asked about the overall feeling of preparedness and self-assessed deficits with regard to clinical knowledge and skills. Three logistic regression models were used to identify medical skills which predict the feeling of preparedness. Results All in all, about 60% of the participating doctors felt poorly prepared for post-graduate training. Self-assessed deficits in ECG interpretation (aOR: 4.39; 95% CI: 2.012-9.578), treatment and therapy planning (aOR: 3.42; 95% CI: 1.366-8.555), and intubation (aOR: 2.10; 95% CI: 1.092-4.049) were found to be independently associated with the overall feeling of preparedness in the final regression model. Conclusions Many junior doctors in Germany felt inadequately prepared for being a doctor. With regard to the contents of medical curricula, our results show that more emphasis on ECG-interpretation, treatment and therapy planning and intubation is required to improve the feeling of preparedness of medical graduates

    Intracellular Events and Cell Fate in Filovirus Infection

    Get PDF
    Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and dendritic cells. The infection spreads to the liver, spleen and later other organs by blood and lymph flow. A hallmark of filovirus infection is the depletion of non-infected lymphocytes; however, the molecular mechanisms leading to the observed bystander lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the fate of infected cells in filovirus disease. In this review we will explore what is known about the intracellular events leading to virus amplification and cell damage in filovirus infection. Furthermore, we will discuss how cellular dysfunction and cell death may correlate with disease pathogenesis

    Microglia mechanics : immune activation alters traction forces and durotaxis

    Get PDF
    This work was supported by the Austrian Agency for International Cooperation in Education and Research (Scholarship to LB), Faculty of Computer Science and Biomedical Engineering at Graz University of Technology (Scholarship to LB), German National Academic Foundation (Scholarship to DK), Wellcome Trust/University of Cambridge Institutional Strategic Support Fund (Research Grant to KF), Isaac Newton Trust (Research Grant 14.07 (m) to KF), Leverhulme Trust (Research Project Grant RPG-2014-217 to KF), UK Medical Research Council (Career Development Award to KF), and the Human Frontier Science Program (Young Investigator Grant RGY0074/2013 to GS, MG, and KF). Date of Acceptance: 31/08/2015Microglial cells are key players in the primary immune response of the central nervous system. They are highly active and motile cells that chemically and mechanically interact with their environment. While the impact of chemical signaling on microglia function has been studied in much detail, the current understanding of mechanical signaling is very limited. When cultured on compliant substrates, primary microglial cells adapted their spread area, morphology, and actin cytoskeleton to the stiffness of their environment. Traction force microscopy revealed that forces exerted by microglia increase with substrate stiffness until reaching a plateau at a shear modulus of ~5 kPa. When cultured on substrates incorporating stiffness gradients, microglia preferentially migrated toward stiffer regions, a process termed durotaxis. Lipopolysaccharide-induced immune-activation of microglia led to changes in traction forces, increased migration velocities and an amplification of durotaxis. We finally developed a mathematical model connecting traction forces with the durotactic behavior of migrating microglial cells. Our results demonstrate that microglia are susceptible to mechanical signals, which could be important during central nervous system development and pathologies. Stiffness gradients in tissue surrounding neural implants such as electrodes, for example, could mechanically attract microglial cells, thus facilitating foreign body reactions detrimental to electrode functioning.Publisher PDFPeer reviewe

    Over-indebtedness and its association with the prevalence of back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over-indebtedness is an increasing phenomenon worldwide. Massive financial strain, as found in over-indebted persons, might influence the occurrence of back pain. In this explorative study we examined the prevalence of back pain in over-indebted persons in Germany for the first time ever and compared it to the prevalence of back pain in the German general population.</p> <p>Methods</p> <p>A cross sectional study comprising 949 participants (52.6% women) was conducted to collect data on the point prevalence of back pain in an over-indebted collective. A representative sample of the German general population (N = 8318, 53.4% women) was used as non-indebted reference group.</p> <p>Results</p> <p>The point prevalence of back pain was 80% in the over-indebted collective, compared to 20% in the general population. The influence of socioeconomic factors on the prevalence of back pain differed partially between the general population and the over-indebted collective. Being over-indebted was identified as an independent effect modifier and was associated with an eleven times increased probability to suffer from back pain (aOR: 10.92, 95%CI: 8.96 - 13.46).</p> <p>Conclusion</p> <p>Until now, only little is known about the effects of intense financial strain like over-indebtedness on health. Our study suggests that over-indebted persons represent a risk group for back pain and that it might be sensible to take financial strain into account when taking a medical history on back pain. Over-indebtedness and private bankruptcy is of increasing importance in industrialized countries, therefore more research on the subject seems to be necessary.</p

    Two-Photon Fluorescence Spectroscopy and Imaging of 4-Dimethylaminonaphthalimide Peptide and Protein Conjugates

    Get PDF
    We report detailed photophysical studies on the two-photon fluorescence processes of the solvatochromic fluorophore 4-DMN as a conjugate of the calmodulin (CaM) and the associated CaM-binding peptide M13. Strong two-photon fluorescence enhancement has been observed which is associated with calcium binding. It is found that the two-photon absorption cross-section is strongly dependent on the local environment surrounding the 4-DMN fluorophore in the CaM conjugates, providing sensitivity between sites of fluorophore attachment. Utilizing time-resolved measurements, the emission dynamics of 4-DMN under various environmental (solvent) conditions are analyzed. In addition, anisotropy measurements reveal that the 4-DMN–S38C–CaM system has restricted rotation in the calcium-bound calmodulin. To establish the utility for cellular imaging, two-photon fluorescence microscopy studies were also carried out with the 4-DMN-modified M13 peptide in cells. Together, these studies provide strong evidence that 4-DMN is a useful probe in two-photon imaging, with advantageous properties for cellular experiments.German Science Foundation (SO 1100/1-1
    corecore