85 research outputs found

    Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration

    Get PDF
    Alterations in mitochondrial dynamics (fission, fusion and movement) are implicated in many neurodegenerative diseases, from rare genetic disorders such as Charcot-Marie-Tooth disease, to common conditions including Alzheimer’s disease. However, the relationship between altered mitochondrial dynamics and neurodegeneration is incompletely understood. Here we show that disease associated MFN2 proteins suppressed both mitochondrial fusion and transport, and produced classic features of segmental axonal degeneration without cell body death, including neurofilament filled swellings, loss of calcium homeostasis, and accumulation of reactive oxygen species. By contrast, depletion of Opa1 suppressed mitochondrial fusion while sparing transport, and did not induce axonal degeneration. Axon degeneration induced by mutant MFN2 proteins correlated with the disruption of the proper mitochondrial positioning within axons, rather than loss of overall mitochondrial movement, or global mitochondrial dysfunction. We also found that augmenting expression of MFN1 rescued the axonal degeneration caused by MFN2 mutants, suggesting a possible therapeutic strategy for Charcot-Marie-Tooth disease. These experiments provide evidence that the ability of mitochondria to sense energy requirements and localize properly within axons is key to maintaining axonal integrity, and may be a common pathway by which disruptions in axonal transport contribute to neurodegeneration

    A randomised, feasibility trial of an Exercise and Nutrition-based Rehabilitation programme (ENeRgy) in people with cancer

    Get PDF
    From Wiley via Jisc Publications RouterErna Haraldsdottir - ORCID: 0000-0003-4891-0743 https://orcid.org/0000-0003-4891-0743Background: Despite rehabilitation being increasingly advocated for people living with incurable cancer, there is limited evidence supporting efficacy or component parts. The progressive decline in function and nutritional in this population would support an approach that targets these factors. This trial aimed to assess the feasibility of an exercise and nutrition based rehabilitation programme in people with incurable cancer. Methods: We randomized community dwelling adults with incurable cancer to either a personalized exercise and nutrition based programme (experimental arm) or standard care (control arm) for 8 weeks. Endpoints included feasibility, quality of life, physical activity (step count), and body weight. Qualitative and health economic analyses were also included. Results: Forty‐five patients were recruited (23 experimental arm, 22 control arm). There were 26 men (58%), and the median age was 78 years (IQR 69–84). At baseline, the median BMI was 26 kg/m2 (IQR: 22–29), and median weight loss in the previous 6 months was 5% (IQR: −12% to 0%). Adherence to the experimental arm was >80% in 16/21 (76%) patients. There was no statistically significant difference in the following between trial arms: step count − median % change from baseline to endpoint, per trial arm (experimental −18.5% [IQR: −61 to 65], control 5% [IQR: −32 to 50], P = 0.548); weight − median % change from baseline to endpoint, per trial arm (experimental 1%[IQR: −3 to 3], control −0.5% [IQR: −3 to 1], P = 0.184); overall quality of life − median % change from baseline to endpoint, per trial arm (experimental 0% [IQR: −20 to 19], control 0% [IQR: −23 to 33], P = 0.846). Qualitative findings observed themes of capability, opportunity, and motivation amongst patients in the experimental arm. The mean incremental cost of the experimental arm versus control was £‐319.51 [CI −7593.53 to 6581.91], suggesting the experimental arm was less costly. Conclusions: An exercise and nutritional rehabilitation intervention is feasible and has potential benefits for people with incurable cancer. A larger trial is now warranted to test the efficacy of this approach.12pubpub

    New Cancer Immunotherapy Agents in Development: a report from an associated program of the 31

    Get PDF
    This report is a summary of \u27New Cancer Immunotherapy Agents in Development\u27 program, which took place in association with the 31st Annual Meeting of the Society for Immunotherapy of Cancer (SITC), on November 9, 2016 in National Harbor, Maryland. Presenters gave brief overviews of emerging clinical and pre-clinical immune-based agents and combinations, before participating in an extended panel discussion with multidisciplinary leaders, including members of the FDA, leading academic institutions and industrial drug developers, to consider topics relevant to the future of cancer immunotherapy

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers

    Get PDF
    Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue engineering, optics, and electronics. The aim of this study was to use phase separation to tailor the spatial location of drugs and thereby generate release profiles of drug payload over periods ranging from 1 week to months by exploiting different mechanisms: polymer degradation, polymer diluent dissolution, and control of microstructure. To achieve this, we used drop-on-demand inkjet three-dimensional (3D) printing. We predicted the microstructure resulting from phase separation using high-throughput screening combined with a model based on the Flory-Huggins interaction parameter and were able to show that drug release from 3D-printed objects can be predicted from observations based on single drops of mixtures. We demonstrated for the first time that inkjet 3D printing yields controllable phase separation using picoliter droplets of blended photoreactive oligomers/monomers. This new understanding gives us hierarchical compositional control, from droplet to device, allowing release to be "dialled up"without manipulation of device geometry. We exemplify this approach by fabricating a biodegradable, long-term, multiactive drug delivery subdermal implant ("polyimplant") for combination therapy and personalized treatment of coronary heart disease. This is an important advance for implants that need to be delivered by cannula, where the shape is highly constrained and thus the usual geometrical freedoms associated with 3D printing cannot be easily exploited, which brings a hitherto unseen level of understanding to emergent material properties of 3D printing
    corecore