23 research outputs found

    Centering inclusivity in the design of online conferences-An OHBM-Open Science perspective

    Get PDF
    As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume

    The variegation of human brain vulnerability to rare genetic disorders and convergence with behaviorally defined disorders

    Get PDF
    BACKGROUND: Diverse gene dosage disorders (GDDs) increase risk for psychiatric impairment, but characterization of GDD effects on the human brain has so far been piecemeal with few simultaneous analyses of multiple brain features across different GDDs. METHODS: Here, through multimodal neuroimaging of 3 aneuploidy syndromes [XXY (total n = 191, 92 controls), XYY (total n=81, 47 controls) , trisomy 21 (total n=69, 41 controls)], we systematically map the effects of supernumerary X, Y and chromosome 21 dosage across a breadth of 15 different macrostructural, microstructural, and functional imaging derived phenotypes (IDPs). RESULTS: We reveal considerable diversity in cortical changes across GDDs and IDPs. This variegation of IDP change underlines the limitations of studying GDD effects unimodally. Integration across all IDP change maps reveals highly distinct architectures of cortical change in each GDD along with partial coalescence onto a common spatial axis of cortical vulnerability that is evident in all three GDDs. This common axis shows strong alignment with shared cortical changes in behaviorally defined psychiatric disorders and is enriched for specific molecular and cellular signatures. CONCLUSION: Use of multimodal neuroimaging data in three aneuploidies indicates that different GDDs impose unique fingerprints of change in the human brain that differ widely depending on the imaging modality being considered. Embedded in this variegation is a spatial axis of shared multimodal change that aligns with shared brain changes across psychiatric disorders and therefore represents a major high-priority target for future translational research in neuroscience

    Differentiating amyloid beta spread in autosomal dominant and sporadic Alzheimer\u27s disease

    Get PDF
    Amyloid-beta deposition is one of the hallmark pathologies in both sporadic Alzheimer\u27s disease and autosomal-dominant Alzheimer\u27s disease, the latter of which is caused by mutations in genes involved in amyloid-beta processing. Despite amyloid-beta deposition being a centrepiece to both sporadic Alzheimer\u27s disease and autosomal-dominant Alzheimer\u27s disease, some differences between these Alzheimer\u27s disease subtypes have been observed with respect to the spatial pattern of amyloid-beta. Previous work has shown that the spatial pattern of amyloid-beta in individuals spanning the sporadic Alzheimer\u27s disease spectrum can be reproduced with high accuracy using an epidemic spreading model which simulates the diffusion of amyloid-beta across neuronal connections and is constrained by individual rates of amyloid-beta production and clearance. However, it has not been investigated whether amyloid-beta deposition in the rarer autosomal-dominant Alzheimer\u27s disease can be modelled in the same way, and if so, how congruent the spreading patterns of amyloid-beta across sporadic Alzheimer\u27s disease and autosomal-dominant Alzheimer\u27s disease are. We leverage the epidemic spreading model as a data-driven approach to probe individual-level variation in the spreading patterns of amyloid-beta across three different large-scale imaging datasets (2 sporadic Alzheimer\u27s disease, 1 autosomal-dominant Alzheimer\u27s disease). We applied the epidemic spreading model separately to the Alzheimer\u27s Disease Neuroimaging initiative (n = 737), the Open Access Series of Imaging Studies (n = 510) and the Dominantly Inherited Alzheimer\u27s Network (n = 249), the latter two of which were processed using an identical pipeline. We assessed inter-and intra-individual model performance in each dataset separately and further identified the most likely subject-specific epicentre of amyloid-beta spread. Using epicentres defined in previous work in sporadic Alzheimer\u27s disease, the epidemic spreading model provided moderate prediction of the regional pattern of amyloid-beta deposition across all three datasets. We further find that, whilst the most likely epicentre for most amyloid-beta-positive subjects overlaps with the default mode network, 13% of autosomal-dominant Alzheimer\u27s disease individuals were best characterized by a striatal origin of amyloid-beta spread. These subjects were also distinguished by being younger than autosomal-dominant Alzheimer\u27s disease subjects with a default mode network amyloid-beta origin, despite having a similar estimated age of symptom onset. Together, our results suggest that most autosomal-dominant Alzheimer\u27s disease patients express amyloid-beta spreading patterns similar to those of sporadic Alzheimer\u27s disease, but that there may be a subset of autosomal-dominant Alzheimer\u27s disease patients with a separate, striatal phenotype

    OHBM_OSSIG_Brainhack-2020

    No full text
    Slides of the traintrack for the OHBM 2020 Brainhack https://ohbm.github.io/hackathon2020

    Comparative neuroimaging of sex differences in human and mouse brain anatomy

    No full text
    In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-specific brain development, there have been no attempts to formally compare human and mouse neuroanatomical sex differences to ascertain how well they translate. Addressing this question would shed critical light on the use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use structural magnetic resonance imaging to conduct the first comparative neuroimaging study of sex-specific neuroanatomy of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous regions (r=0.30). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-specific brain development in mice to brain regions that best echo sex-specific brain development in humans

    Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease

    No full text
    Tau is a hallmark pathology of Alzheimer's disease, and animal models have suggested that tau spreads from cell to cell through neuronal connections, facilitated by β-amyloid (Aβ). We test this hypothesis in humans using an epidemic spreading model (ESM) to simulate tau spread, and compare these simulations to observed patterns measured using tau-PET in 312 individuals along Alzheimer's disease continuum. Up to 70% of the variance in the overall spatial pattern of tau can be explained by our model. Surprisingly, the ESM predicts the spatial patterns of tau irrespective of whether brain Aβ is present, but regions with greater Aβ burden show greater tau than predicted by connectivity patterns, suggesting a role of Aβ in accelerating tau spread. Altogether, our results provide evidence in humans that tau spreads through neuronal communication pathways even in normal aging, and that this process is accelerated by the presence of brain Aβ

    Author Correction: Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease.

    No full text
    The original version of the Supplementary information associated with this Article inadvertently omitted Supplementary Table S1. The HTML has been updated to include a corrected version of the Supplementary information
    corecore