56 research outputs found

    Discrimination between bacterial species by ratiometric analysis of their carbohydrate binding profile

    Get PDF
    Antibiotic resistance is a global health concern meaning there is an urgent need for new treatments and diagnostics. Here glycosylated surfaces are used to profile the binding patterns of a range of Gram-negative, Gram-positive and Mycobacteria. This enables the creation of ‘barcodes’ to enable identification and discrimination between the strains, which could not be achieved by single-point glycan binding and offers a new concept in bacteria detection

    A GFP-strategy for efficient recombinant protein overexpression and purification in Mycobacterium smegmatis

    Get PDF
    One of the major obstacles to obtaining a complete structural and functional understanding of proteins encoded by the Mycobacterium tuberculosis (Mtb) pathogen is due to significant difficulties in producing recombinant mycobacterial proteins. Recent advances that have utilised the closely related Mycobacterium smegmatis species as a native host have been effective. Here we have developed a method for the rapid screening of both protein production and purification strategies of mycobacterial proteins in whole M. smegmatis cells following green fluorescent protein (GFP) fluorescence as an indicator. We have adapted the inducible T7-promoter based pYUB1062 shuttle vector by the addition of a tobacco etch virus (TEV) cleavable C-terminal GFP enabling the target protein to be produced as a GFP-fusion with a poly-histidine tag for affinity purification. We illustrate the advantages of a fluorescent monitoring approach with the production and purification of the mycobacterial N-acetylglucosamine-6-phosphate deacetylase (NagA)-GFP fusion protein. The GFP system described here will accelerate the production of mycobacterial proteins that can be used to understand the molecular mechanisms of Mtb proteins and facilitate drug discovery efforts

    Dimeric benzoboroxoles for targeted activity against Mycobacterium tuberculosis

    Get PDF
    Dimeric benzoboroxoles that are covalently linked by a short scaffold enhance selective anti-tubercular activity. These multimeric benzoboroxole compounds are capable of engaging the specific extracellular Mycobacterium tuberculosis glycans, do not lead to the evolution of resistance and bypass the need to cross the impermeable mycobacterial cell envelope barrier

    Multivalent antimicrobial polymer nanoparticles target mycobacteria and gram-negative bacteria by distinct mechanisms

    Get PDF
    Due to the emergence of antimicrobial resistance to traditional small molecule drugs, cationic antimicrobial polymers are appealing targets. Mycobacterium tuberculosis is a particular problem, with multi- and total drug resistance spreading and more than a billion latent infections globally. This study reports nanoparticles bearing variable densities of poly(dimethylaminoethyl methacrylate) and the unexpected and distinct mechanisms of action this multivalent presentation imparts against Escherichia coli verses Mycobacterium smegmatis (model of M. tuberculosis), leading to killing or growth inhibition respectively. A convergent ‘grafting to’ synthetic strategy was used to assemble a 50-member nanoparticle library and using a high- throughput screen identified that only the smallest (2 nm) particles were stable in both saline and complex cell media. Compared to the linear polymers, the nanoparticles displayed 2- and 8-fold enhancements in antimicrobial activity against M. smegmatis and E. coli respectively. Mechanistic studies demonstrated that the antimicrobial particles were bactericidal against E. coli, due to rapid disruption of the cell membranes. Conversely, against M. smegmatis the particles did not lyse the cell membrane but rather had a bacteriostatic effect. These results demonstrate that to develop new polymeric anti-tuberculars the widely assumed, broad spectrum, membrane-disrupting mechanism of polycations must be re-evaluated. It is clear that synthetic nanomaterials can engage in more complex interactions with mycobacteria, which we hypothesise is due to the unique cell envelope at the surface of these bacteria

    Structural and functional determination of homologs of the Mycobacterium tuberculosis N-acetylglucosamine-6-phosphate deacetylase (NagA)

    Get PDF
    The (Mtb) pathogen encodes an -acetylglucosamine-6-phosphate deacetylase enzyme, NagA (Rv3332), that belongs to the amidohydrolase superfamily. NagA enzymes catalyze the deacetylation of -acetylglucosamine-6-phosphate (GlcNAc6P) to glucosamine-6-phosphate (GlcN6P). NagA is a potential anti-tubercular drug target because it represents the key enzymatic step in the generation of essential amino-sugar precursors required for cell wall biosynthesis and also influences recycling of cell wall peptidoglycan fragments. Here, we report the structural and functional characterization of NagA from (MSNagA) and (MMNagA), close relatives of Using a combination of X-ray crystallography, site-directed mutagenesis, and biochemical and biophysical assays, we show that these mycobacterial NagA enzymes are selective for GlcNAc6P. Site-directed mutagenesis studies revealed crucial roles of conserved residues in the active site that underpin stereo-selective recognition, binding, and catalysis of substrates. Moreover, we report the crystal structure of MSNagA in both ligand-free form and in complex with the GlcNAc6P substrate at 2.6 Å and 2.0 Å resolutions, respectively. The GlcNAc6P-complex structure disclosed the precise mode of GlcNAc6P binding and the structural framework of the active site, including two divalent metals located in the α/β binuclear site. Furthermore, we observed a cysteine residue located on a flexible loop region that occludes the active site. This cysteine is unique to mycobacteria and may represent a unique subsite for targeting mycobacterial NagA enzymes. Our results provide critical insights into the structural and mechanistic properties of mycobacterial NagA enzymes having an essential role in amino-sugar and nucleotide metabolism in mycobacteria

    Biochemical and phenotypic characterisation of the Mycobacterium smegmatis transporter UspABC

    Get PDF
    Mycobacterium tuberculosis (Mtb) is an intracellular human pathogen that has evolved to survive in a nutrient limited environment within the host for decades. Accordingly, Mtb has developed strategies to acquire scarce nutrients and the mycobacterial transporter systems provide an important route for the import of key energy sources. However, the physiological role of the Mtb transporters and their substrate preference(s) are poorly characterised. Previous studies have established that the Mtb UspC solute-binding domain recognises amino- and phosphorylated-sugars, indicating that the mycobacterial UspABC transporter plays a key role in the import of peptidoglycan precursors. Herein, we have used a wide array of approaches to investigate the role of UspABC in Mycobacterium smegmatis by analysis of mutant strains that either lack the solute binding domain: ΔuspC or the entire transport complex: ΔuspABC. Analysis of mycobacterial transcripts shows that the uspABC system is functionally expressed in mycobacteria as a contiguous reading frame. Topology mapping confirms an Nin-Cin orientation of the UspAB integral membrane spanning domains. Phenotypic microarray profiling of commercially available sugars suggests, unexpectedly, that the uspC and ΔuspABC mutants had different carbon utilisation profiles and that neither strain utilised glucose-1-phosphate. Furthermore, proteomics analysis showed an alteration in the abundance of proteins involved in sugar and lipid metabolism, crucial for cell envelope synthesis, and we propose that UspABC has an important role in determining the interplay between these pathways

    Evaluation of the Antimicrobial Activity of Cationic Polymers against Mycobacteria: Toward Antitubercular Macromolecules.

    Get PDF
    Antimicrobial resistance is a global healthcare problem with a dwindling arsenal of usable drugs. Tuberculosis, caused by Mycobacterium tuberculosis, requires long-term combination therapy and multi- and totally drug resistant strains have emerged. This study reports the antibacterial activity of cationic polymers against mycobacteria, which are distinguished from other Gram-positive bacteria by their unique cell wall comprising a covalently linked mycolic acid-arabinogalactan-peptidoglycan complex (mAGP), interspersed with additional complex lipids which helps them persist in their host. The present study finds that poly(dimethylaminoethyl methacrylate) has particularly potent antimycobacterial activity and high selectivity over two Gram-negative strains. Removal of the backbone methyl group (poly(dimethylaminoethyl acrylate)) decreased antimycobacterial activity, and poly(aminoethyl methacrylate) also had no activity against mycobacteria. Hemolysis assays revealed poly(dimethylaminoethyl methacrylate) did not disrupt red blood cell membranes. Interestingly, poly(dimethylaminoethyl methacrylate) was not found to permeabilize mycobacterial membranes, as judged by dye exclusion assays, suggesting the mode of action is not simple membrane disruption, supported by electron microscopy analysis. These results demonstrate that synthetic polycations, with the correctly tuned structure are useful tools against mycobacterial infections, for which new drugs are urgently required

    Structural basis of trehalose recognition by the mycobacterial LpqY-SugABC transporter

    Get PDF
    The Mycobacterium tuberculosis (Mtb) LpqY-SugABC ATP-binding cassette transporter is a recycling system that imports trehalose released during remodelling of the Mtb cell-envelope. As this process is essential for the virulence of the Mtb pathogen it may represent an important target for tuberculosis drug and diagnostic development, but the transporter specificity and molecular determinants of substrate recognition are unknown. To address this, we have determined the structural and biochemical basis of how mycobacteria transport trehalose using a combination of crystallography, STD NMR, molecular dynamics, site-directed mutagenesis, biochemical/biophysical assays and the synthesis of trehalose analogues. This analysis pinpoints key residues of the LpqY substrate binding lipoprotein that dictate substrate-specific recognition and has revealed which disaccharide modifications are tolerated. These findings provide critical insights into how the essential Mtb LpqY-SugABC transporter reuses trehalose and modified analogues, and specifies a framework that can be exploited for the design of new anti-tubercular agents and/or diagnostic tools
    • …
    corecore