3 research outputs found

    Prognostic Impact of High Baseline Stromal Tumor-Infiltrating Lymphocytes in the Absence of Pathologic Complete Response in Early-Stage Triple-Negative Breast Cancer

    No full text
    High stromal tumor-infiltrating lymphocytes (sTILs) are associated with an improved pathologic complete response (pCR) and survival in triple-negative breast cancer (TNBC). We hypothesized that high baseline sTILs would have a favorable prognostic impact in TNBC patients without a pCR after neoadjuvant chemotherapy (NACT). In this prospective NACT study, pretreatment biopsies from 318 patients with early-stage TNBC were evaluated for sTILs. Recursive partitioning analysis (RPA) was applied to search for the sTIL cutoff best associated with a pCR. With ≥20% sTILs identified as the optimal cutoff, 33% patients had high sTILs (pCR rate 64%) and 67% had low sTILs (pCR rate 29%). Patients were stratified according to the sTIL cutoff (low vs. high) and response to NACT (pCR vs. residual disease (RD)). The primary endpoint was event-free survival (EFS), with hazard ratios calculated using the Cox proportional hazards regression model and the 3-year restricted mean survival time (RMST) as primary measures. Within the high-sTIL group, EFS was better in patients with a pCR compared with those with RD (HR 0.05; 95% CI 0.01–0.39; p = 0.004). The difference in the 3-year RMST for EFS between the two groups was 5.6 months (95% CI 2.3–8.8; p = 0.001). However, among patients with RD, EFS was not significantly different between those with high sTILs and those with low sTILs (p = 0.7). RNA-seq analysis predicted more CD8+ T cells in the high-sTIL group with favorable EFS compared with the high-sTIL group with unfavorable EFS. This study did not demonstrate that high baseline sTILs confer a benefit in EFS in the absence of a pCR

    Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer

    No full text
    Abstract Patient-derived xenograft (PDX) models of breast cancer are an effective discovery platform and tool for preclinical pharmacologic testing and biomarker identification. We established orthotopic PDX models of triple negative breast cancer (TNBC) from the primary breast tumors of patients prior to and following neoadjuvant chemotherapy (NACT) while they were enrolled in the ARTEMIS trial (NCT02276443). Serial biopsies were obtained from patients prior to treatment (pre-NACT), from poorly responsive disease after four cycles of Adriamycin and cyclophosphamide (AC, mid-NACT), and in cases of AC-resistance, after a 3-month course of different experimental therapies and/or additional chemotherapy (post-NACT). Our study cohort includes a total of 269 fine needle aspirates (FNAs) from 217 women, generating a total of 62 PDX models (overall success-rate = 23%). Success of PDX engraftment was generally higher from those cancers that proved to be treatment-resistant, whether poorly responsive to AC as determined by ultrasound measurements mid-NACT (p = 0.063), RCB II/III status after NACT (p = 0.046), or metastatic relapse within 2 years of surgery (p = 0.008). TNBC molecular subtype determined from gene expression microarrays of pre-NACT tumors revealed no significant association with PDX engraftment rate (p = 0.877). Finally, we developed a statistical model predictive of PDX engraftment using percent Ki67 positive cells in the patient’s diagnostic biopsy, positive lymph node status at diagnosis, and low volumetric reduction of the patient’s tumor following AC treatment. This novel bank of 62 PDX models of TNBC provides a valuable resource for biomarker discovery and preclinical therapeutic trials aimed at improving neoadjuvant response rates for patients with TNBC
    corecore