148 research outputs found
Luminescent Ruthenium(II)− and Rhenium(I)−Diimine Wires Bind Nitric Oxide Synthase
Ru(II)− and Re(I)−diimine wires bind to the oxygenase domain of inducible nitric oxide synthase (iNOSoxy). In the ruthenium wires, [Ru(L)_2L‘]^(2+), L‘ is a perfluorinated biphenyl bridge connecting 4,4‘-dimethylbipyridine to a bulky hydrophobic group (adamantane, 1), a heme ligand (imidazole, 2), or F (3). 2 binds in the active site of the murine iNOSoxy truncation mutants Δ65 and Δ114, as demonstrated by a shift in the heme Soret from 422 to 426 nm. 1 and 3 also bind Δ65 and Δ114, as evidenced by biphasic luminescence decay kinetics. However, the heme absorption spectrum is not altered in the presence of 1 or 3, and Ru−wire binding is not affected by the presence of tetrahydrobiopterin or arginine. These data suggest that 1 and 3 may instead bind to the distal side of the enzyme at the hydrophobic surface patch thought to interact with the NOS reductase module. Complexes with properties similar to those of the Ru−diimine wires may provide an effective means of NOS inhibition by preventing electron transfer from the reductase module to the oxygenase domain. Rhenium−diimine wires, [Re(CO)_3L_1L_1‘]+, where L_1 is 4,7-dimethylphenanthroline and L_1‘ is a perfluorinated biphenyl bridge connecting a rhenium-ligated imidazole to a distal imidazole (F_8bp-im) (4) or F (F_9bp) (5), also form complexes with Δ114. Binding of 4 shifts the Δ114 heme Soret to 426 nm, demonstrating that the terminal imidazole ligates the heme iron. Steady-state luminescence measurements establish that the 4:Δ114 dissociation constant is 100 ± 80 nM. Re−wire 5 binds Δ114 with a K_d of 5 ± 2 μM, causing partial displacement of water from the heme iron. Our finding that both 4 and 5 bind in the NOS active site suggests novel designs for NOS inhibitors. Importantly, we have demonstrated the power of time-resolved FET measurements in the characterization of small molecule:protein interactions that otherwise would be difficult to observe
Computational Reconstruction of Multidomain Proteins Using Atomic Force Microscopy Data
SummaryClassical structural biology techniques face a great challenge to determine the structure at the atomic level of large and flexible macromolecules. We present a novel methodology that combines high-resolution AFM topographic images with atomic coordinates of proteins to assemble very large macromolecules or particles. Our method uses a two-step protocol: atomic coordinates of individual domains are docked beneath the molecular surface of the large macromolecule, and then each domain is assembled using a combinatorial search. The protocol was validated on three test cases: a simulated system of antibody structures; and two experimentally based test cases: Tobacco mosaic virus, a rod-shaped virus; and Aquaporin Z, a bacterial membrane protein. We have shown that AFM-intermediate resolution topography and partial surface data are useful constraints for building macromolecular assemblies. The protocol is applicable to multicomponent structures connected in the polypeptide chain or as disjoint molecules. The approach effectively increases the resolution of AFM beyond topographical information down to atomic-detail structures
N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization
Light-Induced Conformational Changes in Full-Length Arabidopsis thaliana Cryptochrome.
Cryptochromes (CRYs) are widespread flavoproteins with homology to photolyases (PHRs), a class of blue-light-activated DNA repair enzymes. Unlike PHRs, both plant and animal CRYs have a C-terminal domain. This cryptochrome C-terminal (CCT) domain mediates interactions with other proteins, while the PHR-like domain converts light energy into a signal via reduction and radical formation of the flavin adenine dinucleotide cofactor. However, the mechanism by which the PHR-like domain regulates the CCT domain is not known. Here, we applied the pulsed-laser-induced transient grating method to detect conformational changes induced by blue-light excitation of full-length Arabidopsis thaliana cryptochrome 1 (AtCRY1). A significant reduction in the diffusion coefficient of AtCRY1 was observed upon photoexcitation, indicating that a large conformational change occurs in this monomeric protein. AtCRY1 containing a single mutation (W324F) that abolishes an intra-protein electron transfer cascade did not exhibit this conformational change. Moreover, the conformational change was much reduced in protein lacking the CCT domain. Thus, we conclude that the observed large conformational changes triggered by light excitation of the PHR-like domain result from C-terminal domain rearrangement. This inter-domain modulation would be critical for CRYs' ability to transduce a blue-light signal into altered protein-protein interactions for biological activity. Lastly, we demonstrate that the transient grating technique provides a powerful method for the direct observation and understanding of photoreceptor dynamics
PASsing a Signal Low Carbs, Less Protein
AbstractPAS kinases combine the sensor functions of PAS (Per-Arnt-Sim) domains with the regulatory phosphorylation activity of protein kinases. Complementary multidisciplinary reports reveal coordinated regulation of sugar storage and protein synthesis by PAS kinase and suggest structural coupling of ligand and kinase binding by the PAS domain
- …
