6 research outputs found

    Promoter Methylation in Epithelial-Enriched and Epithelial-Depleted Cell Populations Isolated from Breast Milk

    No full text
    Background: Breast cancer is the most frequently diagnosed cancer among Turkish women and both the incidence and associated mortality appear to be increasing. Of particular concern is the percentage of young women diagnosed with breast cancer; roughly 20% of all breast cancer diagnoses in Turkey are in women younger than 40 years. Increased DNA methylation in the promoter region of tumor suppressor genes is a promising molecular biomarker, and human milk provides exfoliated breast epithelial cells appropriate for DNA methylation analyses. Comparisons between DNA methylation patterns in epithelial (epithelial-enriched) and nonepithelial (epithelial-depleted) cell fractions from breast milk have not been reported previously. Objective: In the present study, we examined promoter methylation of 3 tumor suppressor genes in epithelial-enriched and epithelial-depleted cell fractions isolated from breast milk of 43 Turkish women. Methods: Percentage methylation in the promoter region of Rass association domain family 1 (RASSF1), secreted frizzle related protein 1 (SFRP1), and glutathione-S-transferase class pi 1 was determined by pyrosequencing of the epithelialenriched and epithelial-depleted cell fractions. Results: Pyrosequencing identified a few subjects with significantly increased methylation in 1 or more genes. There was little correlation between the 2 cell fractions within individuals; only 1 woman had increased methylation for 1 gene (SFRP1) in both her enriched and depleted cell fractions. Methylation was positively associated with age for SFRP1 (epithelial-depleted fraction) and with body mass index for RASSF1 (epithelial-enriched cell fraction), respectively. Conclusion: Overall, results show that the methylation signals vary between different cell types in breast milk and suggest that breast milk can be used to assess DNA methylation patterns associated with increased breast cancer risk

    Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors

    No full text
    <div><p>Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC.</p></div
    corecore