2,950 research outputs found

    How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: A new hypothesis

    Get PDF
    The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4 cm and works together with membrane potential, correspondingly representing the retinal layers,photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors’ individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex,and the retina work in unison to create an infrastructure of visual space that functionally ‘‘places” the objects within this ‘‘neural” space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina,but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision

    Delayed Southern Hemisphere Climate Change Induced by Stratospheric Ozone Recovery, as Projected by the CMIP5 Models

    Get PDF
    Stratospheric ozone is expected to recover by the end of this century due to the regulation of ozone depleting substances by the Montreal Protocol. Targeted modeling studies have suggested that the climate response to ozone recovery will greatly oppose the climate response to rising greenhouse-gas (GHG) emissions. However, the extent of this cancellation remains unclear since only a few such studies are available. Here, we analyze a much larger set of simulations performed for the Coupled Model Intercomparison Project, phase 5, all of which include ozone recovery. We show that the closing of the ozone hole will cause a delay in summer-time (DJF) Southern Hemisphere climate change, between now and 2045. Specifically, we find that the position of the jet stream, the width of the subtropical dry-zones, the seasonality of surface temperatures, and sea ice concentrations all exhibit significantly reduced summer-time trends over the first half of the 21st Century as a consequence of ozone recovery. After 2045, forcing from GHG emissions begins to dominate the climate response. Finally, comparing the relative influences of future GHG emissions and historic ozone depletion, we find that the simulated DJF tropospheric circulation changes between 1965-2005 (driven primarily by ozone depletion) are larger than the projected changes in any future scenario over the entire 21st Century

    Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models

    Get PDF
    This work documents how the midlatitude, eddy-driven jets respond to climate change using model output from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The authors consider separately the North Atlantic, the North Pacific, and the Southern Hemisphere jets. The analysis is not limited to annual-mean changes in the latitude and speed of the jets, but also explores how the variability of each jet changes with increased greenhouse gases. All jets are found to migrate poleward with climate change: the Southern Hemisphere jet shifts poleward by 2° of latitude between the historical period and the end of the twenty-first century in the representative concentration pathway 8.5 (RCP8.5) scenario, whereas both Northern Hemisphere jets shift by only 1°. In addition, the speed of the Southern Hemisphere jet is found to increase markedly (by 1.2 m s−1 between 850 and 700 hPa), while the speed remains nearly constant for both jets in the Northern Hemisphere. More importantly, it is found that the patterns of jet variability are a strong function of the jet position in all three sectors of the globe, and as the jets shift poleward the patterns of variability change. Specifically, for the Southern Hemisphere and the North Atlantic jets, the variability becomes less of a north–south wobbling and more of a pulsing (i.e., variation in jet speed). In contrast, for the North Pacific jet, the variability becomes less of a pulsing and more of a north–south wobbling. These different responses can be understood in terms of Rossby wave breaking, allowing the authors to explain most of the projected jet changes within a single dynamical framework

    Robust Wind and Precipitation Responses to the Mount Pinatubo Eruption, as Simulated in the CMIP5 Models

    Get PDF
    The volcanic eruption of Mount Pinatubo in June 1991 is the largest terrestrial eruption since the beginning of the satellite era. Here, the monthly evolution of atmospheric temperature, zonal winds, and precipitation following the eruption in 14 CMIP5 models is analyzed and strong and robust stratospheric and tropospheric circulation responses are demonstrated in both hemispheres, with tropospheric anomalies maximizing in November 1991. The simulated Southern Hemisphere circulation response projects strongly onto the positive phase of the southern annular mode (SAM), while the Northern Hemisphere exhibits robust North Atlantic and North Pacific responses that differ significantly from that of the typical northern annular mode (NAM) pattern. In contrast, observations show a negative SAM following the eruption, and internal variability must be considered along with forced responses. Indeed, evidence is presented that the observed El Niño climate state during and after this eruption may oppose the eruption-forced positive SAM response, based on the El Niño–Southern Oscillation (ENSO) state and SAM response across the models. The results demonstrate that Pinatubo-like eruptions should be expected to force circulation anomalies across the globe and highlight that great care must be taken in diagnosing the forced response as it may not fall into typical seasonal averages or be guaranteed to project onto typical climate modes.National Science Foundation (U.S.). Climate and Large-Scale Dynamics Program (Grant 1419818)National Science Foundation (U.S.) (Grant 1419667

    Quantifying the Lead Time Required for a Linear Trend to Emerge from Natural Climate Variability

    Get PDF
    This study introduces a simple analytic expression for calculating the lead time required for a linear trend to emerge in a Gaussian first-order autoregressive process. The expression is derived from the standard error of the regression and is tested using the NCAR Community Earth System Model Large Ensemble of climate change simulations. It is shown to provide a robust estimate of the point in time when the forced signal of climate change has emerged from the natural variability of the climate system with a predetermined level of statistical confidence. The expression provides a novel analytic tool for estimating the time of emergence of anthropogenic climate change and its associated regional climate impacts from either observed or modeled estimates of natural variability and trends.National Science Foundation (U.S.). Climate and Large-Scale Dynamics Program (Grant AGS-1419667

    Surface ozone variability and the jet position: Implications for projecting future air quality

    Get PDF
    Changes in the variability of surface ozone can affect the incidence of ozone pollution events. Analysis of multi-century simulations from a chemistry climate model shows that present-day summertime variability of surface ozone depends strongly on the jet stream position over eastern North America. This relationship holds on decadal time scales under projected climate change scenarios, in which surface ozone variability follows the robust poleward shift of the jet. The correlation between ozone and co-located temperature over eastern North America is also closely tied to the jet position, implying that local ozone-temperature relationships may change as the circulation changes. Jet position can thus serve as a dynamical predictor of future surface ozone variability over eastern North America and may also modulate ozone variability in other northern midlatitude regions
    corecore