27 research outputs found

    The importance of urban green areas in the creation of spatial city policies on the example of Pruszków city

    Get PDF
    In urban space, there is a growing need for urban greenery in undeveloped and degraded areas, as well as the need to revitalize already existing urban greenery, which has been neglected and has become a crisis area. Green areas play a key role in every city and are an integral part of every city. They provide aeration of the city, transport corridors for migratory birds, stop rainwater, reduce air temperature. Their presence in urban space is particularly important in the context of growing urban development. For urban residents they are equally important because they are meeting and resting places. The paper presents the proposal of revitalization solutions for urban green areas of the Pruszków on the example of Potulickich Park.W przestrzeni miasta zauważa się coraz większą potrzebę tworzenia zieleni miejskiej na terenach niezagospodarowanych i zdegradowanych, jak również rewitalizacji już istniejącej, która zaniedbana ulega degradacji i staje się obszarem kryzysowym. Tereny zieleni odgrywają kluczową rolę w każdym mieście i są jego nieodłącznym elementem. Zapewniają one przewietrzanie miasta, stanowią korytarze komunikacyjne dla ptaków wędrownych, zatrzymują wody opadowe, obniżają temperaturę powietrza. Ich obecność w przestrzeni miejskiej jest szczególnie ważna w kontekście zwiększającej się zabudowy. Dla mieszkańców miast są one równie ważne, ponieważ stanowią miejsca spotkań i wypoczynku. W artykule przedstawiono propozycję rozwiązań rewitalizacyjnych dla obszarów zieleni miejskiej Pruszkowa na przykładzie Parku Potulickich

    Analysis of Trace Elements in Human Brain: Its Aim, Methods, and Concentration Levels

    Get PDF
    Trace elements play a crucial role in many biochemical processes, mainly as components of vitamins and enzymes. Although small amounts of metal ions have protective properties, excess metal levels result in oxidative injury, which is why metal ion homeostasis is crucial for the proper functioning of the brain. The changes of their level in the brain have been proven to be a risk factor for Alzheimer's, Parkinson's, and Huntington's diseases, as well as amyotrophic lateral sclerosis. Therefore, it is currently an important application of various analytical methods. This review covers the most important of them: inductively coupled ground mass spectrometry (ICP-MS), flame-induced atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (GFAAS), optical emission spectrometry with excitation in inductively coupled plasma (ICP-OES), X-ray fluorescence spectrometry (XRF), and neutron activation analysis (NAA). Additionally, we present a summary of concentration values found by different research groups

    Involvement of NMDA receptor complex in the anxiolytic-like effects of chlordiazepoxide in mice

    Get PDF
    In the present study, we demonstrated that low, ineffective doses of N-methyl-d-aspartic acid (NMDA) receptor antagonists [competitive NMDA antagonist, CGP 37849, at 0.312 mg/kg intraperitoneally (i.p.), antagonist of the glycineB sites, L-701,324, at 2 mg/kg i.p., partial agonist of glycineB sites, d-cycloserine, at 2.5 mg/kg i.p.] administered jointly with an ineffective dose of the benzodiazepine, chlordiazepoxide (CDP, 2.5 mg/kg i.p.), significantly increased the percentage of time spent in the open arms of the elevated plus-maze (index of anxiolytic effect). Furthermore, CDP-induced anxiolytic-like activity (5 mg/kg i.p.) was antagonized by NMDA (75 mg/kg i.p.) and by an agonist of glycineB sites of the NMDA receptor complex, d-serine [100 nmol/mouse intracerebroventricularly (i.c.v.)]. The present study showed a positive interaction between γ-aminobutyric acid (GABA) and glutamate neurotransmission in the anxiolytic-like activity in the elevated plus-maze test in mice and this activity seems to particularly involve the NMDA receptors

    Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies—A Narrative Review

    No full text
    With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing “dual” biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety

    HPLC-DAD Determination of Iodide in Mineral Waters on Phosphatidylcholine Column

    No full text
    Iodine is an essential nutrient necessary for the production of thyroid hormones. A valuable source of iodide, which is the bio-available iodine form could be mineral waters offered by different spas. In this work, the method capable of direct determination of iodide in mineral water samples based on IAM liquid chromatography on the phosphatidylcholine column (IAM.PC.DD2 Regis HPLC) with DAD detection without sample pretreatment or any pre-concentration steps is presented. The calibration graph for iodide was linear in the range of 0.5–10.0 mg L−1 with a correlation coefficient of 0.9996. The limit of detection was 22.84 ng mL−1. The relative recoveries were in the interval of 98.5–100.2% and the repeatability, expressed as a relative standard deviation (RSD) was less than 5%. The RSA (Response Surface Analysis) investigated the effect of the sample concentration and the injection volume. The iodide concentrations in the mineral water samples ranged from 0.58 to 2.88 mg L−1. The accuracy of the method was assessed through independent analysis by ICP-MS. Iodide levels measured by these two procedures did not significantly differ. The effects of interfering ions like HCO3−, Cl−, SO42−, F−, and Br− were also tested. The analysis has shown insignificant differences in the values of the iodide peak area and its height measured in multicomponent mixtures with an error smaller than 5%

    Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface

    No full text
    A series of imidazolium and pyridinium ionic liquids with different anions (Cl−, Br−, BF4−, PF6−) has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile) but it was not sensitive to the change of temperature in the range of 5–40 °C

    The Current State of Knowledge on <i>Salvia hispanica</i> and <i>Salviae hispanicae semen</i> (Chia Seeds)

    No full text
    Chia seeds (Salviae hispanicae semen) are obtained from Salvia hispanica L. This raw material is distinguished by its rich chemical composition and valuable nutritional properties. It is currently referred to as “health food”. The purpose of the present work was to perform a literature review on S. hispanica and chia seeds, focusing on their chemical composition, biological properties, dietary importance, and medicinal uses. The valuable biological properties of chia seeds are related to their rich chemical composition, with particularly high content of polyunsaturated fatty acids, essential amino acids, polyphenols, as well as vitamins and bioelements. The available scientific literature indicates the cardioprotective, hypotensive, antidiabetic, and antiatherosclerotic effects of this raw material. In addition, studies based on in vitro assays and animal and human models have proven that chia seeds are characterized by neuroprotective, hepatoprotective, anti-inflammatory, and antioxidant properties. These properties indicate a valuable role of chia in the prevention of civilization diseases. Chia seeds are increasingly popular in functional food and cosmetic and pharmaceutical industries. That is attributed not only to their desirable chemical composition and biological activity but also to their high availability. Nevertheless, S. hispanica is also the object of specific biotechnological studies aimed at elaboration of micropropagation protocols of this plant species

    Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review

    No full text
    The aim of this paper was to review recent literature (from 2000 onwards) and summarize the newest findings on fluctuations in the concentration of some essential macro- and microelements in those patients with a history of chronic alcohol abuse. The focus was mainly on four elements which the authors found of particular interest: Iron, magnesium, copper, and manganese. After independently reviewing over 50 articles, the results were consistent with regard to iron and magnesium. On the other hand, data were limited, and in some cases contradictory, as far as copper and manganese were concerned. Iron overload and magnesium deficiency are two common results of an excessive and prolonged consumption of alcohol. An increase in the levels of iron can be seen both in the serum and within the cells, hepatocytes in particular. This is due to a number of factors: Increased ferritin levels, lower hepcidin levels, as well as some fluctuations in the concentration of the TfR receptor for transferrin, among others. Hypomagnesemia is universally observed among those suffering from alcoholism. Again, the causes for this are numerous and include malnutrition, drug abuse, respiratory alkalosis, and gastrointestinal problems, apart from the direct influence of excessive alcohol intake. Unfortunately, studies regarding the levels of both copper and manganese in the case of (alcoholic) liver disease are scarce and often contradictory. Still, the authors have attempted to summarize and give a thorough insight into the literature available, bearing in mind the difficulties involved in the studies. Frequent comorbidities and mutual relationships between the elements in question are just some of the complications in the study of this topic

    Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A review

    No full text
    Chitosan-based nanoparticles (chitosan-based nanocomposites; chitosan nanoparticles; ChNPs) are promising materials that are receiving a lot of attention in the last decades. ChNPs have great potential as nanocarriers. They are able to encapsulate drugs as well as active compounds and deliver them to a specific place in the body providing a controlled release. In the article, an overview has been made of the most frequently used preparation methods, and the developed applications in medicine. The presentation of the most important information concerning ChNPs, especially chitosan’s properties in drug delivery systems (DDS), as well as the method of NPs production was quoted. Additionally, the specification and classification of the NPs’ morphological features determined their application together with the methods of attaching drugs to NPs. The latest scientific reports of the DDS using ChNPs administered orally, through the eye, on the skin and transdermally were taken into account
    corecore