145 research outputs found

    Nurses\u27 preparedness for disaster response in rural and urban primary healthcare settings in Tanzania

    Get PDF
    Introduction: Nurses are often on the frontline of disaster management, providing care to patients with emerging physical, mental, and emotional turbulence, and acting as educators for health promotion and disaster prevention in both rural and urban contexts. However, the literature suggests that nurses are inadequately prepared for disaster response. This study examined preparedness for disaster response among nurses in rural and urban primary healthcare settings in Tanzania. Methods: This qualitative descriptive study involved purposefully selected qualified nurses and nurse administrators working in rural (n=20) and urban (n=11) primary healthcare facilities in Tanzania. Telephone-based interviews were conducted to gather data that were then analyzed thematically. Results: Five themes emerged from the analysis: previous experiences, technical capacity, current strategies, challenges, and overall preparedness. Previous experiences included personally caring for victims, working in disaster response teams, working in administrative roles during disasters, and conducting community sensitization. Most nurses in rural contexts had not received training on disaster response and relied on past experience, knowledge from nursing school, observing peers, and knowledge from the internet and movies. Current strategies for disaster response included response teams (although these were considered ‘weak’), ensuring the availability of equipment and supplies, and infrastructure for victim management. Challenges in disaster response included inadequate resources, understaffing, lack of expertise at primary healthcare facilities, nurses tasked with multiple responsibilities, inadequate technical capacity, fears of infection, poor interpersonal relationships, inadequate community knowledge, poor reporting systems, delayed healthcare seeking, long distances to facilities, and poor road infrastructure. These challenges were more pronounced in rural settings. Most nurses felt they were well prepared to respond to disasters, although this appeared to be rooted in a willingness to provide care rather than having adequate knowledge, skills, and resources for disaster response. Suggestions for better preparing nurses for disaster response included training, increasing essential equipment and medical supplies, increasing the nursing workforce, improving reporting systems, disseminating local guidelines, strengthening disaster response teams, and improving the nursing training curricula to cover disaster management. Conclusion: A range of institutional, individual, and community challenges affect nurses’ preparedness for disaster response in rural and urban primary healthcare settings. Addressing these challenges requires multiple strategies that extend beyond the capacity building of nurses to strengthen health system disaster preparedness in general, prioritizing rural contexts

    The first 8-13 micron spectra of globular cluster red giants: circumstellar silicate dust grains in 47 Tucanae (NGC 104)

    Full text link
    We present 8-13 micron spectra of eight red giants in the globular cluster 47 Tucanae (NGC 104), obtained at the European Southern Observatory 3.6m telescope. These are the first mid-infrared spectra of metal-poor, low-mass stars. The spectrum of at least one of these, namely the extremely red, large-amplitude variable V1, shows direct evidence of circumstellar grains made of amorphous silicate.Comment: Accepted for publication in Astronomy and Astrophysics, 5 page

    The Neon Abundance in the Ejecta of QU Vul From Late-Epoch IR Spectra

    Full text link
    We present ground-based SpectroCam-10 mid-infrared, MMT optical, and Spitzer Space Telescope IRS mid-infrared spectra taken 7.62, 18.75, and 19.38 years respectively after the outburst of the old classical nova QU Vulpeculae (Nova Vul 1984 #2). The spectra of the ejecta are dominated by forbidden line emission from neon and oxygen. Our analysis shows that neon was, at the first and last epochs respectively, more than 76 and 168 times overabundant by number with respect to hydrogen compared to the solar value. These high lower limits to the neon abundance confirm that QU Vul involved a thermonuclear runaway on an ONeMg white dwarf and approach the yields predicted by models of the nucleosynthesis in such events.Comment: ApJ 2007 accepted, 18 pages, including 5 figures, 1 tabl

    A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. II. IC 1613

    Full text link
    We present Spitzer Space Telescope IRAC photometry of the Local Group dwarf irregular galaxy IC 1613. We compare our 3.6, 4.5, 5.8, and 8.0 micron photometry with broadband optical photometry and find that the optical data do not detect 43% and misidentify an additional 11% of the total AGB population, likely because of extinction caused by circumstellar material. Further, we find that a narrowband optical carbon star study of IC 1613 detects 50% of the total AGB population and only considers 18% of this population in calculating the carbon to M-type AGB ratio. We derive an integrated mass-loss rate from the AGB stars of 0.2-1.0 x 10^(-3) solar masses per year and find that the distribution of bolometric luminosities and mass-loss rates are consistent with those for other nearby metal-poor galaxies. Both the optical completeness fractions and mass-loss rates in IC 1613 are very similar to those in the Local Group dwarf irregular, WLM, which is expected given their similar characteristics and evolutionary histories.Comment: Accepted by ApJ, 26 pages, 10 figures, version with high-resolution figures available at: http://webusers.astro.umn.edu/~djackson

    Dust Morphology and Composition in FU Orionis Systems

    Get PDF
    FU Orionis stars are a small group of pre–main-sequence stars known for large-amplitude optical variability. These objects also exhibit multiwavelength phenomena suggestive of active accretion from a circumstellar disk. We present high spatial resolution mid-IR imaging and spectroscopy, submillimeter photometry, and 3–4 μm photometry of four FU Ori–class objects, RNO 1B and C, Z CMa, and Par 21, and one object classified as a pre–FU Ori star, V380 Ori. We resolve multiple IR sources and extended emission in the RNO 1B/C system, and we discuss in detail their association with disk activity and the source of the Infrared Astronomical Satellite far-IR and radio maser emission in this field. We derive dust temperatures and masses for all sources and discuss how dust composition and morphology is related to the evolutionary stage of these objects

    Five Years of Mid-Infrared Evolution of the Remnant of SN 1987A: The Encounter Between the Blast Wave and the Dusty Equatorial Ring

    Get PDF
    We have used the Spitzer satellite to monitor the mid-IR evolution of SN 1987A over a 5 year period spanning the epochs between days 6000 and 8000 since the explosion. The supernova (SN) has evolved into a supernova remnant (SNR) and its radiative output is dominated by the interaction of the SN blast wave with the pre-existing equatorial ring (ER). The mid-IR spectrum is dominated by emission from ~180 K silicate dust, collisionally-heated by the hot X-ray emitting gas with a temperature and density of ~5x10^6 K and 3x10^4 cm-3, respectively. The mass of the radiating dust is ~1.2x10^(-6) Msun on day 7554, and scales linearly with IR flux. The infrared to soft-X-ray flux ratio is roughly constant with a value of 2.5. Gas-grain collisions therefore dominate the cooling of the shocked gas. The constancy of of this ratio suggests that very little grain processing or gas cooling have occurred throughout this epoch. The shape of the dust spectrum remained unchanged during the observations while the total flux increased with a time dependence of t^(0.87), t being the time since the first encounter between the blast wave and the ER. These observations are consistent with the transitioning of the blast wave from free expansion to a Sedov phase as it propagates into the main body of the ER.Comment: Accepted for publication in the ApJ, 11 pages, 11 figure

    Spitzer Space Telescope Infrared Imaging and Spectroscopy of the Crab Nebula

    Get PDF
    We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared ground-based image made in the light of [Fe II]1.644 micron. The 8.0 micron image, made with a bandpass that includes [Ar II]7.0 micron, resembles the general morphology of visible H-alpha and near-IR [Fe II] line emission, while the 3.6 and 4.5 micron images are dominated by continuum synchrotron emission. The 24 micron and 70 micron images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that reflects the superposition of the flatter spectrum jet and torus with the steeper diffuse nebula, and suggestions of the expected pileup of relativistic electrons just before the exponential cutoff in the X-ray. The pulsar, and the associated equatorial toroid and polar jet structures seen in Chandra and HST images (Hester et al. 2002) can be identified in all of the IRAC images. We present the IR photometry of the pulsar. The forbidden lines identified in the high resolution IR spectra are all double due to Doppler shifts from the front and back of the expanding nebula and give an expansion velocity of approximately 1264 km/s.Comment: 21 pages, 4 tables, 16 figure

    Infrared and X-Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of Supernova 1987A

    Get PDF
    Multiwavelength observations of supernova remnant (SNR) 1987A show that its morphology and luminosity are rapidly changing at X-ray, optical, infrared, and radio wavelengths as the blast wave from the explosion expands into the circumstellar equatorial ring, produced by mass loss from the progenitor star. The observed infrared (IR) radiation arises from the interaction of dust grains that formed in mass outflow with the soft X-ray emitting plasma component of the shocked gas. Spitzer IRS spectra at 5 - 30 microns taken on day 6190 since the explosion show that the emission arises from approx. 1.1 x 10(exp -6) solar mass of silicate grains radiating at a temperature of approx. 180+/-(15-20) K. Subsequent observations on day 7137 show that the IR flux had increased by a factor of 2 while maintaining an almost identical spectral shape. The observed IR-to-X-ray flux ratio (IRX) is consistent with that of a dusty plasma with standard LMC dust abundances. This flux ratio has decreased by a factor of approx. 2 between days 6190 and 7137, providing the first direct observation of the ongoing destruction of dust in an expanding SN blast wave on dynamic time scales. Detailed models consistent with the observed dust temperature, the ionization fluence of the soft X-ray emission component, and the evolution of IRX suggest that the radiating si1icate grains are immersed in a 3.5 x 10(exp 6) K plasma with a density of (0.3 - 1) x 10(exp 4)/cu cm, and have a size distribution that is confined to a narrow range of radii between 0.02 and 0.2 microns. Smaller grains may have been evaporated by the initial UV flash from the supernova

    A Spitzer Study of Comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT)

    Get PDF
    We present infrared images and spectra of comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT) as part of a larger program to observe comets inside of 5 AU from the sun with the Spitzer Space Telescope. The nucleus of comet 2P/Encke was observed at two vastly different phase angles (20 degrees and 63 degrees). Model fits to the spectral energy distributions of the nucleus suggest comet Encke's infrared beaming parameter derived from the near-Earth asteroid thermal model may have a phase angle dependence. The observed emission from comet Encke's dust coma is best-modeled using predominately amorphous carbon grains with a grain size distribution that peaks near 0.4 microns, and the silicate contribution by mass to the sub-micron dust coma is constrained to 31%. Comet 67P/Churyumov-Gerasimenko was observed with distinct coma emission in excess of a model nucleus at a heliocentric distance of 5.0 AU. The coma detection suggests that sublimation processes are still active or grains from recent activity remain near the nucleus. Comet C/2001 HT50 (LINEAR-NEAT) showed evidence for crystalline silicates in the spectrum obtained at 3.2 AU and we derive a silicate-to-carbon dust ratio of 0.6. The ratio is an order of magnitude lower than that derived for comets 9P/Tempel 1 during the Deep Impact encounter and C/1995 O1 (Hale-Bopp).Comment: Accepted for publication in the Astrophysical Journal 48 pages, 15 figures, 10 table
    corecore