19 research outputs found

    Staphylococcus aureus Contains Two Low-Molecular-Mass Phosphotyrosine Protein Phosphatases

    No full text
    The analysis of the different amino acid sequences deduced from the complete genome sequence of the gram-positive bacterium Staphylococcus aureus suggested the presence of two eukaryotic-protein-like low-molecular-mass phosphotyrosine protein phosphatases, which are usually found in gram-negative bacteria. To check this prediction, the corresponding genes were cloned and overexpressed in an Escherichia coli system. Two distinct proteins with an apparent molecular mass of 23 kDa each, PtpA and PtpB, were produced and then purified by affinity chromatography and assayed for enzymatic properties. As expected, they both exhibited phosphatase activity in vitro, with a maximum value at a pH of around 6.2 and at a temperature of 40°C. In addition, their kinetic constants, their specificity for phosphotyrosine residues, and their sensitivity to two phosphatase inhibitors, N-ethylmaleimide and orthovanadate, matched those of acid low-molecular-mass phosphotyrosine protein phosphatases

    Characterization of a Serine/Threonine Kinase Involved in Virulence of Staphylococcus aureus â–ż

    No full text
    Staphylococcus aureus is a common human cutaneous and nasal commensal and a major life-threatening pathogen. Adaptation to the different environments encountered inside and outside the host is a crucial requirement for survival and colonization. We identified and characterized a eukaryotic-like serine/threonine kinase with three predicted extracellular PASTA domains (SA1063, or Stk1) and its associated phosphatase (SA1062, or Stp1) in S. aureus. Biochemical analyses revealed that Stk1 displays autokinase activity on threonine and serine residues and is localized to the membrane. Stp1 is a cytoplasmic protein with manganese-dependent phosphatase activity toward phosphorylated Stk1. In-frame deletions of the stk1 and stp1 genes were constructed in S. aureus strain 8325-4. Phenotypic analyses of the mutants revealed reduced growth of the stk1 mutant in RPMI 1640 defined medium that was restored when adenine was added to the medium. Furthermore, the stk1 mutant displayed increased resistance to Triton X-100 and to fosfomycin, suggesting modifications in cell wall metabolism. The stk1 mutant was tested for virulence in a mouse pyelonephritis model and found to be strongly reduced for survival in the kidneys (approximately 2-log-unit decrease) compared to the parental strain. Renal histopathological analyses showed severe inflammatory lesions in mice infected with the parental S. aureus SH1000 strain, whereas the Δstk1 mutant led to only minimal renal lesions. These results confirm the important role of Stk1 for full expression of S. aureus pathogenesis and suggest that phosphorylation levels controlled by stk1 are essential in controlling bacterial survival within the host

    A mechano- and heat-gated two-pore domain K + channel controls excitability in adult zebrafish skeletal muscle

    No full text
    TRAAK channels are mechano-gated two-pore-domain K + channels. Up to now, activity of these channels has been reported in neurons but not in skeletal muscle, yet an archetype of tissue challenged by mechanical stress. Using patch clamp methods on isolated skeletal muscle fibers from adult zebrafish, we show here that single channels sharing properties of TRAAK channels, i.e., selective to K + ions, of 56 pS unitary conductance in the presence of 5 mM external K + , activated by membrane stretch, heat, arachidonic acid, and internal alkaline pH, are present in enzymatically isolated fast skeletal muscle fibers from adult zebrafish. The kcnk4b transcript encoding for TRAAK channels was cloned and found, concomitantly with activity of mechano-gated K + channels, to be absent in zebrafish fast skeletal muscles at the larval stage but arising around 1 mo of age. The transfer of the kcnk4b gene in HEK cells and in the adult mouse muscle, that do not express functional TRAAK channels, led to expression and activity of mechano-gated K + channels displaying properties comparable to native zebrafish TRAAK channels. In whole-cell voltage-clamp and current-clamp conditions, membrane stretch and heat led to activation of macroscopic K + currents and to acceleration of the repolarization phase of action potentials respectively, suggesting that heat production and membrane deformation associated with skeletal muscle activity can control muscle excitability through TRAAK channel activation. TRAAK channels may represent a teleost-specific evolutionary product contributing to improve swimming performance for escaping predators and capturing prey at a critical stage of development

    FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells

    No full text
    International audienceBackground: Angiogenesis is the process by which new blood vessels arise from pre-existing ones. Fibroblast growth factor-2 (FGF-2), a leading member of the FGF family of heparin-binding growth factors, contributes to normal as well as pathological angiogenesis. Pre-mRNA alternative splicing plays a key role in the regulation of cellular and tissular homeostasis and is highly controlled by splicing factors, including SRSFs. SRSFs belong to the SR protein family and are regulated by serine/threonine kinases such as SRPK1. Up to now, the role of SR proteins and their regulators in the biology of endothelial cells remains elusive, in particular upstream signals that control their expression. Results: By combining 2D endothelial cells cultures, 3D collagen sprouting assay, a model of angiogenesis in cellulose sponges in mice and a model of angiogenesis in zebrafish, we collectively show that FGF-2 promotes proliferation, survival, and sprouting of endothelial cells by activating a SRSF1/SRSF3/SRPK1-dependent axis. In vitro, we further demonstrate that this FGF-2-dependent signaling pathway controls VEGFR1 pre-mRNA splicing and leads to the generation of soluble VEGFR1 splice variants, in particular a sVEGFR1-ex12 which retains an alternative last exon, that contribute to FGF-2-mediated angiogenic functions. Finally, we show that sVEGFR1-ex12 mRNA level correlates with that of FGF-2/FGFR1 in squamous lung carcinoma patients and that sVEGFR1-ex12 is a poor prognosis marker in these patients. Conclusions: We demonstrate that FGF-2 promotes angiogenesis by activating a SRSF1/SRSF3/SRPK1 network that regulates VEGFR1 alternative splicing in endothelial cells, a process that could also contribute to lung tumor progression

    Identification of binding partners interacting with the α1-N-propeptide of type V collagen

    No full text
    The predominant form of type V collagen is the [α1(V)]₂α2(V) heterotrimer. Mutations in COL5A1 or COL5A2, encoding respectively the α1(V)- and α2(V)-collagen chain, cause classic EDS (Ehlers-Danlos syndrome), a heritable connective tissue disorder, characterized by fragile hyperextensible skin and joint hypermobility. Approximately half of the classic EDS cases remain unexplained. Type V collagen controls collagen fibrillogenesis through its conserved α1(V)-N-propeptide domain. To gain an insight into the role of this domain, a yeast two-hybrid screen among proteins expressed in human dermal fibroblasts was performed utilizing the N-propeptide as a bait. We identified 12 interacting proteins, including extracellular matrix proteins and proteins involved in collagen biosynthesis. Eleven interactions were confirmed by surface plasmon resonance and/or co-immunoprecipitation: α1(I)- and α2(I)-collagen chains, α1(VI)-, α2(VI)- and α3(VI)-collagen chains, tenascin-C, fibronectin, PCPE-1 (procollagen C-proteinase enhancer-1), TIMP-1 (tissue inhibitor of metalloproteinases-1), MMP-2 (matrix metalloproteinase 2) and TGF-β1 (transforming growth factor β1). Solid-phase binding assays confirmed the involvement of the α1(V)-N-propeptide in the interaction between native type V collagen and type VI collagen, suggesting a bridging function of this protein complex in the cell-matrix environment. Enzymatic studies showed that processing of the α1(V)-N-propeptide by BMP-1 (bone morphogenetic protein 1)/procollagen C-proteinase is enhanced by PCPE-1. These interactions are likely to be involved in extracellular matrix homoeostasis and their disruption could explain the pathogenetic mechanism in unresolved classic EDS cases
    corecore