8 research outputs found

    Emergence of enterovirus D68 in a Norwegian paediatric population 2012-2022

    Get PDF
    BackgroundEnterovirus D68 (EV-D68) primarily causes respiratory infection, occasionally manifesting with neurological symptoms. Outbreak reports have been published from various countries including Norway, but a longitudinal study on EV-D68 prevalence in Northern Europe is lacking.MethodsRespiratory samples from children ≤14 years received at Oslo University Hospital in the years 2012-2022 were examined for EV-D68. Samples from 2012-2015 were retrospectively screened using a semi-specific RT-PCR, with positive samples confirmed by an EV-D68 specific RT-PCR. Samples from 2016-2022 underwent routine diagnostics with the EV-D68 specific RT-PCR.ResultsAmong the 22,911 samples tested, EV-D68 was detected in 338 samples (324 patients). Most EV-D68 cases occurred in August to December. The highest detection rate was recorded in 2014, 2016 and 2022 (6.0%, 7.8% and 6.6% of samples from August-December). Lower frequencies were observed in 2018 and 2019 (1.0% and 2.4%), and in the years before the 2014 outbreak (2012: 1.3%, 2013: 0.8%). Few cases were identified in 2020-2021. Children aged 0-1 years accounted for 40%, and 0-4 years for 78%, of the EV-D68 positive patients. Most of the patients with EV-D68 (83%) were hospitalised.DiscussionAlso in Norway, EV-D68 has caused outbreaks with significant disease burden, especially among the youngest children. The detection rate varies, with a trend towards biennial outbreaks, except for low numbers in 2018 and during the COVID-19 restrictions (2020-2021). Due to its potential for severe respiratory illness and significant neurological complications, conducting EV-D68 testing is essential both for diagnosing clinically suspected cases, and for monitoring the disease burden

    Serum concentrations of kynurenines in adult patients with attention-deficit hyperactivity disorder (ADHD): a case–control study

    Get PDF
    Background: The essential amino acid tryptophan is catabolised mainly through the kynurenine pathway. Altered circulating levels of kynurenines have been reported in chronic inflammatory conditions and in several neuropsychiatric disorders, including depression and schizophrenia. Candidate gene studies suggest that genes related to the kynurenine catabolism may be associated with attention-deficit hyperactivity disorder (ADHD). Additionally, ADHD patients often report comorbid depression or anxiety. In this study we investigated serum levels of kynurenines in Norwegian adult ADHD patients and adult controls. Methods: We compared serum levels of tryptophan and the seven tryptophan metabolites kynurenine, kynurenic acid, anthranilic acid, 3-hydroxykynurenine, xanthurenic acid, 3-hydroxyanthranilic acid and quinolinic acid in 133 adult patients with ADHD and 131 adult controls (18–40 years). Riboflavin (vitamin B2), total vitamin B6 and the nicotine metabolite cotinine were also measured. Serum samples were analysed using mass spectrometry. Patients and controls reported comorbid disorders and past (childhood) and current ADHD symptoms using the Wender Utah Rating Scale (WURS) and the Adult ADHD Self-report Scale (ASRS). Logistic regression was used to calculate odds ratios for having an ADHD diagnosis for different serum levels of each metabolite. In addition, we used Spearman’s correlation analysis to investigate the correlation between serum levels of tryptophan and kynurenines and ADHD symptom scores. Results: Lower serum concentrations of tryptophan [odds ratio 0.61 (95 % confidence interval 0.45–0.83)], kynurenic acid [0.73 (0.53–0.99)], xanthurenic acid [0.65 (0.48–0.89)] and 3-hydroxyanthranilic acid [0.63 (0.46–0.85)], and higher levels of cotinine [7.17 (4.37–12.58)], were significantly associated with ADHD. After adjusting for tryptophan levels, only 3-hydroxyanthranilic acid and cotinine remained significant. Lower levels of tryptophan and kynurenine were also found to be correlated with higher total ASRS score and higher total WURS score, when adjusting for smoking and age. Conclusions: Our results suggest that there may be differences in serum levels of tryptophan and kynurenines between adult ADHD patients and adult controls. Although our findings do not suggest a chronic immune activation in ADHD, the underlying mechanisms and possible clinical implications of the differences should be further explored

    Diagnostic performance of a SARS-CoV-2 rapid antigen test in a large, Norwegian cohort

    No full text
    Background Rapid antigen tests (RATs) may be included in national strategies for handling the SARS-CoV-2 pandemic, as they provide test results rapidly, are easily performed outside laboratories, and enable immediate contract tracing. However, before implementation further clinical evaluation of test sensitivity is warranted. Objectives To examine the performance of Abbott’s Panbio™ COVID-19 Ag Rapid Test Device for SARS-CoV-2 testing in a low to medium prevalence setting in Norway. Study design A prospective study comparing the results of the Panbio RAT with PCR in 4857 parallel samples collected at a SARS-CoV-2 test station in Oslo, and from COVID-19 outbreaks in six Norwegian municipalities. Results A total of 4857 cases were included in the study; 3991 and 866 cases from the test station and the outbreak municipalities, respectively. The prevalence at the test station in Oslo was 6.3 %, and the overall sensitivity of the RAT was 74 %. Increased sensitivity was observed in patients who experienced symptoms (79 %) and when considering samples with viral loads above estimated level of infectivity (84 %), while it was lower in asymptomatic persons (55 %). In the outbreak municipalities, the overall prevalence was 6.9 %, and the total sensitivity of the RAT was 70 %. Conclusions Our results indicate that the test correctly identified most infectious individuals. Nevertheless, the sensitivity is considerably lower than for PCR, and it is important that the limitations of the test are kept in mind in the follow-up of tested individuals

    Diagnostic performance of a SARS-CoV-2 rapid antigen test in a large, Norwegian cohort

    Get PDF
    Background Rapid antigen tests (RATs) may be included in national strategies for handling the SARS-CoV-2 pandemic, as they provide test results rapidly, are easily performed outside laboratories, and enable immediate contract tracing. However, before implementation further clinical evaluation of test sensitivity is warranted. Objectives To examine the performance of Abbott’s Panbio™ COVID-19 Ag Rapid Test Device for SARS-CoV-2 testing in a low to medium prevalence setting in Norway. Study design A prospective study comparing the results of the Panbio RAT with PCR in 4857 parallel samples collected at a SARS-CoV-2 test station in Oslo, and from COVID-19 outbreaks in six Norwegian municipalities. Results A total of 4857 cases were included in the study; 3991 and 866 cases from the test station and the outbreak municipalities, respectively. The prevalence at the test station in Oslo was 6.3 %, and the overall sensitivity of the RAT was 74 %. Increased sensitivity was observed in patients who experienced symptoms (79 %) and when considering samples with viral loads above estimated level of infectivity (84 %), while it was lower in asymptomatic persons (55 %). In the outbreak municipalities, the overall prevalence was 6.9 %, and the total sensitivity of the RAT was 70 %. Conclusions Our results indicate that the test correctly identified most infectious individuals. Nevertheless, the sensitivity is considerably lower than for PCR, and it is important that the limitations of the test are kept in mind in the follow-up of tested individuals

    Diagnostic performance of a SARS-CoV-2 rapid antigen test in a large, Norwegian cohort

    No full text
    Background Rapid antigen tests (RATs) may be included in national strategies for handling the SARS-CoV-2 pandemic, as they provide test results rapidly, are easily performed outside laboratories, and enable immediate contract tracing. However, before implementation further clinical evaluation of test sensitivity is warranted. Objectives To examine the performance of Abbott’s Panbio™ COVID-19 Ag Rapid Test Device for SARS-CoV-2 testing in a low to medium prevalence setting in Norway. Study design A prospective study comparing the results of the Panbio RAT with PCR in 4857 parallel samples collected at a SARS-CoV-2 test station in Oslo, and from COVID-19 outbreaks in six Norwegian municipalities. Results A total of 4857 cases were included in the study; 3991 and 866 cases from the test station and the outbreak municipalities, respectively. The prevalence at the test station in Oslo was 6.3 %, and the overall sensitivity of the RAT was 74 %. Increased sensitivity was observed in patients who experienced symptoms (79 %) and when considering samples with viral loads above estimated level of infectivity (84 %), while it was lower in asymptomatic persons (55 %). In the outbreak municipalities, the overall prevalence was 6.9 %, and the total sensitivity of the RAT was 70 %. Conclusions Our results indicate that the test correctly identified most infectious individuals. Nevertheless, the sensitivity is considerably lower than for PCR, and it is important that the limitations of the test are kept in mind in the follow-up of tested individuals

    Rapid SARS-CoV-2 variant monitoring using PCR confirmed by whole genome sequencing in a high-volume diagnostic laboratory

    No full text
    Objectives The emerging SARS-CoV-2 variants of concern (VoC), B.1.1.7, B.1.351 and P.1, with increased transmission and/or immune evasion, emphasise the need for broad and rapid variant monitoring. Our high-volume laboratory introduced a PCR variant assay (Variant PCR) in January 2021 based on the protocol by Vogels et al. Study design To assess whether Variant PCR could be used for rapid B.1.1.7, B.1.351 and P.1 screening, all positive SARS-CoV-2 airway samples were prospectively tested in parallel using both the Variant PCR and whole genome sequencing (WGS). Results In total 1,642 SARS-CoV-2 positive samples from individual patients were tested within a time span of 4 weeks. For all samples with valid results from both Variant PCR and WGS, no VoC was missed by Variant PCR (totalling 399 VoC detected). Conversely, all of the samples identified as “other lineages” (i.e., “non-VoC lineages”) by the Variant PCR, were confirmed by WGS. Conclusions The Variant PCR based on the protocol by Vogels et al., is an effective method for rapid screening for VoC, applicable for most diagnostic laboratories within a pandemic setting. WGS is still required to confirm the identity of certain variants and for continuous surveillance of emerging VoC
    corecore