22 research outputs found

    Nationwide evaluation of mutation-tailored treatment of gastrointestinal stromal tumors in daily clinical practice

    Get PDF
    Background Molecular analysis of KIT and PDGFRA is critical for tyrosine kinase inhibitor treatment selection of gastrointestinal stromal tumors (GISTs) and hence recommended by international guidelines. We performed a nationwide study into the application of predictive mutation testing in GIST patients and its impact on targeted treatment decisions in clinical practice. Methods Real-world clinical and pathology information was obtained from GIST patients with initial diagnosis in 2017-2018 through database linkage between the Netherlands Cancer Registry and the nationwide Dutch Pathology Registry. Results Predictive mutation analysis was performed in 89% of the patients with high risk or metastatic disease. Molecular testing rates were higher for patients treated in expertise centers (96%) compared to non-expertise centers (75%, P < 0.01). Imatinib therapy was applied in 81% of the patients with high risk or metastatic disease without patient's refusal or adverse characteristics, e.g., comorbidities or resistance mutations. Mutation analysis that was performed in 97% of these imatinib-treated cases, did not guarantee mutation-tailored treatment: 2% of these patients had the PDGFRA p.D842V resistance mutation and 7% initiated imatinib therapy at the normal instead of high dose despite of having a KIT exon 9 mutation. Conclusion In conclusion, nationwide real-world data show that over 81% of the eligible high risk or metastatic disease patients receive targeted therapy, which was tailored to the mutation status as recommended in guidelines in 88% of cases. Therefore, still 27% of these GIST patients misses out on mutation-tailored treatment. The reasons for suboptimal uptake of testing and treatment require further study

    Cost-Effectiveness of Parallel Versus Sequential Testing of Genetic Aberrations for Stage IV Non-Small-Cell Lung Cancer in the Netherlands

    Get PDF
    PURPOSE: A large number of targeted treatment options for stage IV nonsquamous non–small-cell lung cancer with specific genetic aberrations in tumor DNA is available. It is therefore important to optimize diagnostic testing strategies, such that patients receive adequate personalized treatment that improves survival and quality of life. The aim of this study is to assess the efficacy (including diagnostic costs, turnaround time (TAT), unsuccessful tests, percentages of correct findings, therapeutic costs, and therapeutic effectiveness) of parallel next generation sequencing (NGS)–based versus sequential single-gene–based testing strategies routinely used in patients with metastasized non–small-cell lung cancer in the Netherlands. METHODS: A diagnostic microsimulation model was developed to simulate 100,000 patients with prevalence of genetic aberrations, extracted from real-world data from the Dutch Pathology Registry. These simulated patients were modeled to undergo different testing strategies composed of multiple tests with different test characteristics including single-gene and panel tests, test accuracy, the probability of an unsuccessful test, and TAT. Diagnostic outcomes were linked to a previously developed treatment model, to predict average long-term survival, quality-adjusted life-years (QALYs), costs, and cost-effectiveness of parallel versus sequential testing. RESULTS: NGS-based parallel testing for all actionable genetic aberrations is on average €266 cheaper than single-gene–based sequential testing, and detects additional relevant targetable genetic aberrations in 20.5% of the cases, given a TAT of maximally 2 weeks. Therapeutic costs increased by €8,358, and 0.12 QALYs were gained, leading to an incremental cost-effectiveness ratio of €69,614/QALY for parallel versus sequential testing. CONCLUSION: NGS-based parallel testing is diagnostically superior over single-gene–based sequential testing, as it is cheaper and more effective than sequential testing. Parallel testing remains cost-effective with an incremental cost-effectiveness ratio of 69,614 €/QALY upon inclusion of therapeutic costs and long-term outcomes

    Micro-costing diagnostics in oncology:from single-gene testing to whole- genome sequencing

    Get PDF
    Purpose: Predictive diagnostics play an increasingly important role in personalized medicine for cancer treatment. Whole-genome sequencing (WGS)-based treatment selection is expected to rapidly increase worldwide. This study aimed to calculate and compare the total cost of currently used diagnostic techniques and of WGS in treatment of non-small cell lung carcinoma (NSCLC), melanoma, colorectal cancer (CRC), and gastrointestinal stromal tumor (GIST) in the Netherlands. Methods: The activity-based costing (ABC) method was conducted to calculate total cost of included diagnostic techniques based on data provided by Dutch pathology laboratories and the Dutch-centralized cancer WGS facility. Costs were allocated to four categories: capital costs, maintenance costs, software costs, and operational costs. Results: The total cost per cancer patient per technique varied from € 58 (Sanger sequencing, three amplicons) to € 2925 (paired tumor-normal WGS). The operational costs accounted for the vast majority (over 90%) of the total per cancer patient technique costs. Conclusion: This study outlined in detail all costing aspects and cost prices of current and new diagnostic modalities used in treatment of NSCLC, melanoma, CRC, and GIST in the Netherlands. Detailed cost differences and value comparisons between these diagnostic techniques enable future economic evaluations to support decision-making

    Comprehensive routine diagnostic screening to identify predictive mutations, gene amplifications, and microsatellite instability in FFPE tumor material

    Get PDF
    Background: Sensitive and reliable molecular diagnostics is needed to guide therapeutic decisions for cancer patients. Although less material becomes available for testing, genetic markers are rapidly expanding. Simultaneous detection of predictive markers, including mutations, gene amplifications and MSI, will save valuable material, time and costs. Methods: Using a single-molecule molecular inversion probe (smMIP)-based targeted next-generation sequencing (NGS) approach, we developed an NGS panel allowing detection of predictive mutations in 33 genes, gene amplifications of 13 genes and microsatellite instability (MSI) by the evaluation of 55 microsatellite markers. The panel was designed to target all clinically relevant single and multiple nucleotide mutations in routinely available lung cancer, colorectal cancer, melanoma, and gastro-intestinal stromal tumor samples, but is useful for a broader set of tumor types. Results: The smMIP-based NGS panel was successfully validated and cut-off values were established for reliable gene amplification analysis (i.e. relative coverage ≥3) and MSI detection (≥30% unstable loci). After validation, 728 routine diagnostic tumor samples including a broad range of tumor types were sequenced with sufficient sensitivity (2.4% drop-out), including samples with low DNA input (< 10 ng; 88% successful), low tumor purity (5-10%; 77% successful), and cytological material (90% successful). 75% of these tumor samples showed ≥1 (likely) pathogenic mutation, including targetable mutations (e.g. EGFR, BRAF, MET, ERBB2, KIT, PDGFRA). Amplifications were observed in 5.5% of the samples, comprising clinically relevant amplifications (e.g. MET, ERBB2, FGFR1). 1.5% of the tumor samples were classified as MSI-high, including both MSI-prone and non-MSI-prone tumors. Conclusions: We developed a comprehensive workflow for predictive analysis of diagnostic tumor samples. The smMIP-based NGS analysis was shown suitable for limited amounts of histological and cytological material. As smMIP technology allows easy adaptation of panels, this approach can comply with the rapidly expanding molecular markers

    Micro-costing diagnostics in oncology: From single-gene testing to whole genome sequencing

    Get PDF
    Purpose: Predictive diagnostics play an increasingly important role in personalized medicine for cancer treatment. Whole genome sequencing (WGS) based treatment selection is expected to rapidly increase worldwide. Detailed and comparative cost analyses of diagnostic techniques are an essential element in decision-making. This study aimed to calculate and compare the total cost of currently used diagnostic techniques and of WGS in treatment of non-small cell lung carcinoma (NSCLC), melanoma, colorectal cancer (CRC) and gastrointestinal stromal tumor (GIST) in the Netherlands. Methods: The activity-based costing (ABC) method was conducted to calculate the total cost of included diagnostic techniques based on data provided by Dutch pathology laboratories and the Dutch centralized cancer WGS facility. Costs were allocated to four categories: capital costs, maintenance costs, software costs and operational costs. Outcome measures were total cost per cancer patient per included technique, and the total cost per cancer patient per most commonly applied technique (combination) for each cancer type. Results: The total cost per cancer patient per technique varied from € 58 (Sanger sequencing, 3 amplicons) to € 4738 (paired tumor-normal WGS). The operational costs accounted for the vast majority over 90 % of the total per cancer patient technique costs. The most important operational cost drivers were consumables followed by personnel (for sample preparation and primary data analysis). Conclusion: This study outlined in detail all costing aspects and cost prices of current and new diagnostic modalities used in treatment of NSCLC, melanoma, CRC and GIST in the Netherlands. Detailed cost differences and value comparisons between these diagnostic techniques enable future economic evaluations to support decision-making on implementation of WGS and other diagnostic modalities in routine clinical practice

    Nationwide evaluation of mutation-tailored anti-EGFR therapy selection in patients with colorectal cancer in daily clinical practice

    Get PDF
    For a nationwide real-word data study on the application of predictive mutation testing of patients with colorectal cancer (CRC) for anti-epidermal growth factor receptor (EGFR) therapy stratification, pathology data were collected from the Dutch Pathology Registry from October 2017 until June 2019 (N=4060) and linked with the Netherlands Cancer Registry. Mutation testing rates increased from 24% at diagnosis of stage IV disease to 60% after 20-23 months of follow-up (p&lt;0.001). Application of anti-EGFR therapy in KRAS/NRAS wild-type patients was mainly observed from the third treatment line onwards (65% vs 17% in first/second treatment line (p&lt;0.001)). The national average KRAS/NRAS/BRAF mutation rate was 63.9%, being similar for next-generation sequencing (NGS)-based approaches and single gene tests (64.4% vs 61.2%, p=ns). NGS-based approaches detected more additional potential biomarkers, for example, ERBB2 amplifications (p&lt;0.05). Therefore, single gene tests are suitable to stratify patients with mCRC for anti-EGFR therapy, but NGS is superior enabling upfront identification of therapy resistance or facilitate enrolment into clinical trials.</p

    Nationwide evaluation of mutation-tailored anti-EGFR therapy selection in patients with colorectal cancer in daily clinical practice

    Get PDF
    For a nationwide real-word data study on the application of predictive mutation testing of patients with colorectal cancer (CRC) for anti-epidermal growth factor receptor (EGFR) therapy stratification, pathology data were collected from the Dutch Pathology Registry from October 2017 until June 2019 (N=4060) and linked with the Netherlands Cancer Registry. Mutation testing rates increased from 24% at diagnosis of stage IV disease to 60% after 20-23 months of follow-up (p&lt;0.001). Application of anti-EGFR therapy in KRAS/NRAS wild-type patients was mainly observed from the third treatment line onwards (65% vs 17% in first/second treatment line (p&lt;0.001)). The national average KRAS/NRAS/BRAF mutation rate was 63.9%, being similar for next-generation sequencing (NGS)-based approaches and single gene tests (64.4% vs 61.2%, p=ns). NGS-based approaches detected more additional potential biomarkers, for example, ERBB2 amplifications (p&lt;0.05). Therefore, single gene tests are suitable to stratify patients with mCRC for anti-EGFR therapy, but NGS is superior enabling upfront identification of therapy resistance or facilitate enrolment into clinical trials.</p

    Nationwide evaluation of mutation-tailored anti-EGFR therapy selection in patients with colorectal cancer in daily clinical practice

    Get PDF
    For a nationwide real-word data study on the application of predictive mutation testing of patients with colorectal cancer (CRC) for anti-epidermal growth factor receptor (EGFR) therapy stratification, pathology data were collected from the Dutch Pathology Registry from October 2017 until June 2019 (N=4060) and linked with the Netherlands Cancer Registry. Mutation testing rates increased from 24% at diagnosis of stage IV disease to 60% after 20-23 months of follow-up (p<0.001). Application of anti-EGFR therapy in KRAS/NRAS wild-type patients was mainly observed from the third treatment line onwards (65% vs 17% in first/second treatment line (p<0.001)). The national average KRAS/NRAS/BRAF mutation rate was 63.9%, being similar for next-generation sequencing (NGS)-based approaches and single gene tests (64.4% vs 61.2%, p=ns). NGS-based approaches detected more additional potential biomarkers, for example, ERBB2 amplifications (p<0.05). Therefore, single gene tests are suitable to stratify patients with mCRC for anti-EGFR therapy, but NGS is superior enabling upfront identification of therapy resistance or facilitate enrolment into clinical trials
    corecore