720 research outputs found

    New perspectives to repair a broken heart

    Get PDF
    The aim of cardiac cell therapy is to restore at least in part the functionality of the diseased or injured myocardium by the use of stem/ progenitor cells. Recent clinical trials have shown the safety of cardiac cell therapy and encouraging efficacy results. A surprisingly wide range of non-myogenic cell types improves ventricular function, suggesting that benefits may result in part from mechanisms that are distinct from true myocardial regeneration. While clinical trials explore cells derived from skeletal muscle and bone marrow, basic researchers are investigating sources of new cardiomyogenic cells, such as resident myocardial progenitors and embryonic stem cells. In this commentary we briefly review the evolution of cell-based cardiac repair, some progress that has been made toward this goal, and future perspectives in the regeneration of cardiac tissue. © 2009 Bentham Science Publishers Ltd

    Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart

    Get PDF
    Experimental data suggest that cell-based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit+ CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild-type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate 'cardiospheres', a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit+ CSCs

    Therapy of pancreatic cancer via an EphA2 receptor-targeted delivery of gemcitabine.

    Get PDF
    First line treatment for pancreatic cancer consists of surgical resection, if possible, and a subsequent course of chemotherapy using the nucleoside analogue gemcitabine. In some patients, an active transport mechanism allows gemcitabine to enter efficiently into the tumor cells, resulting in a significant clinical benefit. However, in most patients, low expression of gemcitabine transporters limits the efficacy of the drug to marginal levels, and patients need frequent administration of the drug at high doses, significantly increasing systemic drug toxicity. In this article we focus on a novel targeted delivery approach for gemcitabine consisting of conjugating the drug with an EphA2 targeting agent. We show that the EphA2 receptor is highly expressed in pancreatic cancers, and accordingly, the drug-conjugate is more effective than gemcitabine alone in targeting pancreatic tumors. Our preliminary observations suggest that this approach may provide a general benefit to pancreatic cancer patients and offers a comprehensive strategy for enhancing delivery of diverse therapeutic agents to a wide range of cancers overexpressing EphA2, thereby potentially reducing toxicity while enhancing therapeutic efficacy

    Epigenetic Factors Related to Low Back Pain: A Systematic Review of the Current Literature

    Get PDF
    : Low back pain (LBP) is one of the most common causes of pain and disability. At present, treatment and interventions for acute and chronic low back pain often fail to provide sufficient levels of pain relief, and full functional restoration can be challenging. Considering the significant socio-economic burden and risk-to-benefit ratio of medical and surgical intervention in low back pain patients, the identification of reliable biomarkers such as epigenetic factors associated with low back pain could be useful in clinical practice. The aim of this study was to review the available literature regarding the epigenetic factors associated with low back pain. This review was carried out in accordance with Preferential Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was carried out in October 2022. Only peer-reviewed articles were considered for inclusion. Fourteen studies were included and showed promising results in terms of reliable markers. Epigenetic markers for LBP have the potential to significantly modify disease management. Most recent evidence suggests that epigenetics is a more promising field for the identification of factors associated with LBP, offering a rationale for further investigation in this field with the long-term goal of finding epigenetic biomarkers that could constitute biological targets for disease management and treatment

    Mechanobiology of the Human Intervertebral Disc: Systematic Review of the Literature and Future Perspectives

    Get PDF
    : Low back pain is an extremely common condition with severe consequences. Among its potential specific causes, degenerative disc disease (DDD) is one of the most frequently observed. Mechanobiology is an emerging science studying the interplay between mechanical stimuli and the biological behavior of cells and tissues. The aim of the presented study is to review, with a systematic approach, the existing literature regarding the mechanobiology of the human intervertebral disc (IVD), define the main pathways involved in DDD and identify novel potential therapeutic targets. The review was carried out in accordance with the Preferential Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Studies were included if they described biological responses of human IVD cells under mechanical stimulation or alterations of mechanical properties of the IVD determined by different gene expression. Fifteen studies were included and showed promising results confirming the mechanobiology of the human IVD as a key element in DDD. The technical advances of the last decade have allowed us to increase our understanding of this topic, enabling us to identify possible therapeutic targets to treat and to prevent DDD. Further research and technological innovations will shed light on the interactions between the mechanics and biology of the human IVD

    Sequencing Analysis of SLX4/FANCP Gene in Italian Familial Breast Cancer Cases

    Get PDF
    Breast cancer can be caused by germline mutations in several genes that are responsible for different hereditary cancer syndromes. Some of the genes causing the Fanconi anemia (FA) syndrome, such as BRCA2, BRIP1, PALB2, and RAD51C, are associated with high or moderate risk of developing breast cancer. Very recently, SLX4 has been established as a new FA gene raising the question of its implication in breast cancer risk. This study aimed at answering this question sequencing the entire coding region of SLX4 in 526 familial breast cancer cases from Italy. We found 81 different germline variants and none of these were clearly pathogenic. The statistical power of our sample size allows concluding that in Italy the frequency of carriers of truncating mutations of SLX4 may not exceed 0.6%. Our results indicate that testing for SLX4 germline mutations is unlikely to be relevant for the identification of individuals at risk of breast cancer, at least in the Italian population

    First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential

    Get PDF
    Human amniotic fluid stem cells (hAFS) have shown a distinct secretory profile and significant regenerative potential in several preclinical models of disease. Nevertheless, little is known about the detailed characterization of their secretome. Herein we show for the first time that hAFS actively release extracellular vesicles (EV) endowed with significant paracrine potential and regenerative effect. c-KIT(+) hAFS were isolated from leftover samples of amniotic fluid from prenatal screening and stimulated to enhance EV release (24 hours 20% O2 versus 1% O2 preconditioning). The capacity of the c-KIT(+) hAFS-derived EV (hAFS-EV) to induce proliferation, survival, immunomodulation, and angiogenesis were investigated in vitro and in vivo. The hAFS-EV regenerative potential was also assessed in a model of skeletal muscle atrophy (HSA-Cre, Smn(F7/F7) mice), in which mouse AFS transplantation was previously shown to enhance muscle strength and survival. hAFS secreted EV ranged from 50 up to 1,000 nm in size. In vitro analysis defined their role as biological mediators of regenerative, paracrine effects while their modulatory role in decreasing skeletal muscle inflammation in vivo was shown for the first time. Hypoxic preconditioning significantly induced the enrichment of exosomes endowed with regenerative microRNAs within the hAFS-EV. In conclusion, this is the first study showing that c-KIT(+) hAFS dynamically release EV endowed with remarkable paracrine potential, thus representing an appealing tool for future regenerative therapy. Stem Cells Translational Medicine 2017;6:1340-1355

    An Optically Pure Apogossypolone Derivative as Potent Pan-Active Inhibitor of Anti-Apoptotic Bcl-2 Family Proteins

    Get PDF
    Our focus in the past several years has been on the identification of novel and effective pan-Bcl-2 antagonists. We have recently reported a series of Apogossypolone (ApoG2) derivatives, resulting in the chiral compound (±) BI97D6. We report here the synthesis and evaluation on its optically pure (−) and (+) atropisomers. Compound (−) BI97D6 potently inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1, and Bfl-1 with IC50 values of 76 ± 5, 31 ± 2, 25 ± 8, and 122 ± 28 nM, respectively. In a cellular assay, compound (−) BI97D6 effectively inhibits cell growth in the PC-3 human prostate cancer and H23 human lung cancer cell lines with EC50 values of 0.22 ± 0.08 and 0.14 ± 0.02 μM, respectively. Similarly, compound (−) BI97D6 effectively induces apoptosis in the BP3 human lymphoma cell line in a dose-dependent manner. The compound also shows little cytotoxicity against bax−/−/bak−/− cells, suggesting that it kills cancers cells predominantly via a Bcl-2 pathway. Moreover, compound (−) BI97D6 displays in vivo efficacy in both a Bcl-2-transgenic mouse model and in a prostate cancer xenograft model in mice. Therefore, compound (−) BI97D6 represents a promising drug lead for the development of novel apoptosis-based therapies for cancer

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Functional Mechanisms Underlying Pleiotropic Risk Alleles at the 19p13.1 Breast–Ovarian Cancer Susceptibility Locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 X 10-20), ER-negative BC (P = 1.1 X 10-13), BRCA1 -associated BC (P = 7.7 X 10-16) and triple negative BC (P-diff = 2 X 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 X 10-3) and ABHD8 (P \u3c 2 X 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8 , and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3\u27-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
    corecore