4 research outputs found

    Comparative Analysis of Supply Risk-Mitigation Strategies for Critical Byproduct Minerals: A Case Study of Tellurium

    No full text
    Materials criticality assessment is a screening framework increasingly applied to identify materials of importance that face scarcity risks. Although these assessments highlight materials for the implicit purpose of informing future action, the aggregated nature of their findings make them difficult to use for guidance in developing nuanced mitigation strategy and policy response. As a first step in the selection of mitigation strategies, the present work proposes a modeling framework and accompanying set of metrics to directly compare strategies by measuring effectiveness of risk reduction as a function of the features of projected supply demand balance over time. The work focuses on byproduct materials, whose criticality is particularly important to understand because their supplies are inherently less responsive to market balancing forces, i.e., price feedbacks. Tellurium, a byproduct of copper refining, which is critical to solar photovoltaics, is chosen as a case study, and three commonly discussed byproduct-relevant strategies are selected: dematerialization of end-use product, byproduct yield improvement, and end-of-life recycling rate improvement. Results suggest that dematerialization will be nearly twice as effective at reducing supply risk as the next best option, yield improvement. Finally, due to its infrequent use at present and its dependence upon long product lifespans, recycling end-of-life products is expected to be the least effective option despite potentially offering other benefits (e.g., cost savings and environmental impact reduction)

    Platinum Availability for Future Automotive Technologies

    No full text
    Platinum is an excellent catalyst, can be used at high temperatures, and is stable in many aggressive chemical environments. Consequently, platinum is used in many current industrial applications, notably automotive catalytic converters, and prospective vehicle fuel cells are expected to rely upon it. Between 2005 and 2010, the automotive industry used approximately 40% of mined platinum. Future automotive industry growth and automotive sales shifts toward new technologies could significantly alter platinum demand. The potential risks for decreased platinum availability are evaluated, using an analysis of platinum market characteristics that describes platinum’s geophysical constraints, institutional efficiency, and dynamic responsiveness. Results show that platinum demand for an automotive fleet that meets 450 ppm greenhouse gas stabilization goals would require within 10% of historical growth rates of platinum supply before 2025. However, such a fleet, due largely to sales growth in fuel cell vehicles, will more strongly constrain platinum supply in the 2050 time period. While current platinum reserves are sufficient to satisfy this increased demand, decreasing platinum ore grade and continued concentration of platinum supply in a single geographic area are availability risk factors to platinum end-users

    Evaluating the Potential for Secondary Mass Savings in Vehicle Lightweighting

    No full text
    Secondary mass savings are mass reductions that may be achieved in supporting (load-bearing) vehicle parts when the gross vehicle mass (GVM) is reduced. Mass decompounding is the process by which it is possible to identify further reductions when secondary mass savings result in further reduction of GVM. Maximizing secondary mass savings (SMS) is a key tool for maximizing vehicle fuel economy. In today’s industry, the most complex parts, which require significant design detail (and cost), are designed first and frozen while the rest of the development process progresses. This paper presents a tool for estimating SMS potential early in the design process and shows how use of the tool to set SMS targets early, before subsystems become locked in, maximizes mass savings. The potential for SMS in current passenger vehicles is estimated with an empirical model using engineering analysis of vehicle components to determine mass-dependency. Identified mass-dependent components are grouped into subsystems, and linear regression is performed on subsystem mass as a function of GVM. A Monte Carlo simulation is performed to determine the mean and 5th and 95th percentiles for the SMS potential per kilogram of primary mass saved. The model projects that the mean theoretical secondary mass savings potential is 0.95 kg for every 1 kg of primary mass saved, with the 5th percentile at 0.77 kg/kg when all components are available for redesign. The model was used to explore an alternative scenario where realistic manufacturing and design limitations were implemented. In this case study, four key subsystems (of 13 total) were locked-in and this reduced the SMS potential to a mean of 0.12 kg/kg with a 5th percentile of 0.1 kg/kg. Clearly, to maximize the impact of mass reduction, targets need to be established before subsystems become locked in

    Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies

    No full text
    The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO<sub>2</sub> at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs
    corecore