409 research outputs found

    Short-term Changes in Ambient Particulate Matter and Risk of Stroke: A Systematic Review and Meta-analysis

    Get PDF
    Background Stroke is a leading cause of death and long‐term disability in the United States. There is a well‐documented association between ambient particulate matter air pollution (PM) and cardiovascular disease morbidity and mortality. Given the pathophysiologic mechanisms of these effects, short‐term elevations in PM may also increase the risk of ischemic and/or hemorrhagic stroke morbidity and mortality, but the evidence has not been systematically reviewed. Methods and Results We provide a comprehensive review of all observational human studies (January 1966 to January 2014) on the association between short‐term changes in ambient PM levels and cerebrovascular events. We also performed meta‐analyses to evaluate the evidence for an association between each PM size fraction (PM2.5, PM10, PM2.5‐10) and each outcome (total cerebrovascular disease, ischemic stroke/transient ischemic attack, hemorrhagic stroke) separately for mortality and hospital admission. We used a random‐effects model to estimate the summary percent change in relative risk of the outcome per 10‐μg/m3 increase in PM. Conclusions We found that PM2.5 and PM10 are associated with a 1.4% (95% CI 0.9% to 1.9%) and 0.5% (95% CI 0.3% to 0.7%) higher total cerebrovascular disease mortality, respectively, with evidence of inconsistent, nonsignificant associations for hospital admission for total cerebrovascular disease or ischemic or hemorrhagic stroke. Current limited evidence does not suggest an association between PM2.5‐10 and cerebrovascular mortality or morbidity. We discuss the potential sources of variability in results across studies, highlight some observations, and identify gaps in literature and make recommendations for future studies

    Low-Cost HIV-1 Diagnosis and Quantification in Dried Blood Spots by Real Time PCR

    Get PDF
    BACKGROUND: Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy. METHODS AND FINDINGS: We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log(10), and %CV <8% up to 4 log(10) dilution. Plasma HIV-1 RNA copy numbers obtained using this method correlated well with the Roche Ultrasensitive (r = 0.91) and branched DNA (r = 0.89) assays. The lower limit of detection (95%) was estimated to be 136 copies. The rtLC DBS assay was 2.5 fold rapid as well as 40-fold cheaper when compared to commercial assays. Adaptation of the assay into other real-time systems demonstrated similar performance. CONCLUSIONS: The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings

    Relationships between Community Virus Activity and Cardiorespiratory Rehospitalizations From Post-Acute Care

    Get PDF
    OBJECTIVES: Quantify the relationship between increasing influenza and respiratory syncytial virus (RSV) community viral activity and cardiorespiratory rehospitalizations among older adults discharged to skilled nursing facilities (SNFs). DESIGN: Retrospective cohort. SETTING AND PARTICIPANTS: Adults aged ≥65 years who were hospitalized and then discharged to a US SNF between 2012 and 2015. METHODS: We linked Medicare Provider Analysis and Review claims to Minimum Data Set version 3.0 assessments, PRISM Climate Group data, and the Centers for Disease Control and Prevention viral testing data. All data were aggregated to US Department of Health and Human Services regions. Negative binomial regression models quantified the relationship between increasing viral activity for RSV and 3 influenza strains (H1N1pdm09, H3N2, and B) and cardiorespiratory rehospitalizations from SNFs. Incidence rate ratios described the relationship between a 5% increase in circulating virus and the rates of rehospitalization for cardiorespiratory outcomes. Analyses were repeated using the same model, but influenza and RSV were considered "in season" or "out of season" based on a 10% positive testing threshold. RESULTS: Cardiorespiratory rehospitalization rates increased by approximately 1% for every 5% increase in circulating influenza A(H3N2), influenza B, and RSV, but decreased by 1% for every 5% increase in circulating influenza A(H1N1pdm09). When respiratory viruses were in season (vs out of season), cardiorespiratory rehospitalization rates increased by approximately 6% for influenza A(H3N2), 3% for influenza B, and 5% for RSV, but decreased by 6% for influenza A(H1N1pdm09). CONCLUSIONS AND IMPLICATIONS: The respiratory season is a particularly important period to implement interventions that reduce cardiorespiratory hospitalizations among SNF residents. Decreasing viral transmission in SNFs through practices such as influenza vaccination for residents and staff, use of personal protective equipment, improved environmental cleaning measures, screening and testing of residents and staff, surveillance of viral activity, and quarantining infected individuals may be potential strategies to limit viral infections and associated cardiorespiratory rehospitalizations

    Maternal residential proximity to major roadways, birth weight, and placental DNA methylation

    Get PDF
    Exposure to traffic pollution during fetal development has been associated with reduced fetal growth, and there is evidence to suggest that epigenetic mechanisms in the placenta in the form of variant DNA methylation may be a potential mechanism of this effect

    Decomposing Racial and Ethnic Disparities in Nursing Home Influenza Vaccination

    Get PDF
    OBJECTIVES: Quantify how observable characteristics contribute to influenza vaccination disparities among White, Black, and Hispanic nursing home (NH) residents. DESIGN: Retrospective cohort. SETTING AND PARTICIPANTS: Short- and long-stay U.S. NH residents aged ≥65 years. METHODS: We linked Minimum Data Set (MDS) and Medicare data to LTCFocUS and other facility data. We included residents with 6-month continuous enrollment in Medicare and an MDS assessment between October 1, 2013, and March 31, 2014. Residents were classified as short-stay (<100 days in NH) or long-stay (≥100 days in NH). We fit multivariable logistic regression models to assess the relationships between 27 resident and NH-level characteristics and receipt of influenza vaccination. Using nonlinear Oaxaca-Blinder decomposition, we decomposed the disparity in influenza vaccination between White versus Black and White versus Hispanic NH residents. Analyses were repeated separately for short- and long-stay residents. RESULTS: Our study included 630,373 short-stay and 1,029,593 long-stay residents. Proportions vaccinated against influenza included 67.2% of White, 55.1% of Black, and 54.5% of Hispanic individuals among short-stay residents and 84.2%, 76.7%, and 80.8%, respectively among long-stay residents. Across 4 comparisons, the crude disparity in influenza vaccination ranged from 3.4 to 12.7 percentage points. By equalizing 27 prespecified characteristics, these disparities could be reduced 37.7% to 59.2%. Living in a predominantly White facility and proxies for NH quality were important contributors across all analyses. Characteristics unmeasured in our data (eg, NH staff attitudes and beliefs) may have also contributed significantly to the disparity. CONCLUSIONS AND IMPLICATIONS: The racial/ethnic disparity in influenza vaccination was most dramatic among short-stay residents. Intervening on factors associated with NH quality would likely reduce these disparities; however, future qualitative research is essential to explore potential contributors that were unmeasured in our data and to understand the degree to which these factors contribute to the overall disparity in influenza vaccination

    Space Perception in Virtual Environments: Displacement from the Center of Projection Causes Less Distortion than Predicted by Cue-Based Models

    Get PDF
    Virtual reality systems commonly include both monocular and binocular depth cues, which have the potential to provide viewers with a realistic impression of spatial properties of the virtual environment. However, when multiple viewers share the same display, only one viewer typically receives the projectively correct images. All other viewers experience the same images despite displacement from the center of projection (CoP). Three experiments evaluated perceptual distortions caused by displacement from the CoP and compared those percepts to predictions of models based on monocular and binocular viewing geometry. Leftward and rightward displacement from the CoP caused virtual angles on the ground plane to be judged as larger and smaller, respectively, compared to judgments from the CoP. Backward and forward displacement caused rectangles on the ground plane to be judged as larger and smaller in depth, respectively, compared to judgments from the CoP. Judgment biases were in the same direction as cue-based model predictions but of smaller magnitude. Displacement from the CoP had asymmetric effects on perceptual judgments, unlike model predictions. Perceptual distortion occurred with monocular cues alone but was exaggerated when binocular cues were added. The results are grounded in terms of practical implications for multiuser virtual environments

    Estimated Cardiorespiratory Hospitalizations Attributable to Influenza and Respiratory Syncytial Virus Among Long-term Care Facility Residents

    Get PDF
    IMPORTANCE: Older adults residing in long-term care facilities (LTCFs) are at a high risk of being infected with respiratory viruses, such as influenza and respiratory syncytial virus (RSV). Although these infections commonly have many cardiorespiratory sequelae, the national burden of influenza- and RSV-attributable cardiorespiratory events remains unknown for the multimorbid and vulnerable LTCF population. OBJECTIVE: To estimate the incidence of cardiorespiratory hospitalizations that were attributable to influenza and RSV among LTCF residents and to quantify the economic burden of these hospitalizations on the US health care system by estimating their associated cost and length of stay. DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study used national Medicare Provider Analysis and Review inpatient claims and Minimum Data Set clinical assessments for 6 respiratory seasons (2011-2017). Long-stay residents of LTCFs were identified as those living in the facility for at least 100 days (index date), aged 65 years or older, and with 6 months of continuous enrollment in Medicare Part A were included. Follow-up occurred from the resident’s index date until the first hospitalization, discharge from the LTCF, disenrollment from Medicare, death, or the end of the study. Residents could re-enter the sample; thus, long-stay episodes of care were identified. Data analysis was performed between January 1 and September 30, 2020. EXPOSURES: Seasonal circulating pandemic 2009 influenza A(H1N1), human influenza A(H3N2), influenza B, and RSV. MAIN OUTCOMES AND MEASURES: Cardiorespiratory hospitalizations (eg, asthma exacerbation, heart failure) were identified using primary diagnosis codes. Influenza- and RSV-attributable cardiorespiratory events were estimated using a negative binomial regression model adjusted for weekly circulating influenza and RSV testing data. Length of stay and costs of influenza- and RSV-attributable events were then estimated. RESULTS: The study population comprised 2 909 106 LTCF residents with 3 138 962 long-stay episodes and 5 079 872 person-years of follow-up. Overall, 10 939 (95% CI, 9413-12 464) influenza- and RSV-attributable cardiorespiratory events occurred, with an incidence of 215 (95% CI, 185-245) events per 100 000 person-years. The cost of influenza- and RSV-attributable cardiorespiratory events was 91055393(9591 055 393 (95% CI, 77 885 316-$104 225 470), and the length of stay was 56 858 (95% CI, 48 757-64 968) days. CONCLUSIONS AND RELEVANCE: This study found that many cardiorespiratory hospitalizations among LTCF residents in the US were attributable to seasonal influenza and RSV. To minimize the burden these events place on the health care system and residents of LTCFs and to prevent virus transmission, additional preventive measures should be implemented

    Projected temperature-related deaths in ten large U.S. metropolitan areas under different climate change scenarios.

    Get PDF
    BACKGROUND: There is an established U-shaped association between daily temperature and mortality. Temperature changes projected through the end of century are expected to lead to higher rates of heat-related mortality but also lower rates of cold-related mortality, such that the net change in temperature-related mortality will depend on location. OBJECTIVES: We quantified the change in heat-, cold-, and temperature-related mortality rates through the end of the century across 10 large US metropolitan areas. METHODS: We applied location-specific projections of future temperature from over 40 downscaled climate models to exposure-response functions relating daily temperature and mortality in 10 US metropolitan areas to estimate the change in temperature-related mortality rates in 2045-2055 and 2085-2095 compared to 1992-2002, under two greenhouse gas emissions scenarios (RCP 4.5 and 8.5). We further calculated the total number of deaths attributable to temperature in 1997, 2050, and 2090 in each metropolitan area, either assuming constant population or accounting for projected population growth. RESULTS: In each of the 10 metropolitan areas, projected future temperatures were associated with lower rates of cold-related deaths and higher rates of heat-related deaths. Under the higher-emission RCP 8.5 scenario, 8 of the 10 metropolitan areas are projected to experience a net increase in annual temperature-related deaths per million people by 2086-2095, ranging from a net increase of 627 (95% empirical confidence interval [eCI]: 239, 1018) deaths per million in Los Angeles to a net decrease of 59 (95% eCI: -485, 314) deaths per million in Boston. Applying these projected temperature-related mortality rates to projected population size underscores the large public health burden of temperature. CONCLUSIONS: Increases in the heat-related death rate are projected to outweigh decreases in the cold-related death rate in 8 out of 10 cities studied under a high emissions scenario. Adhering to a lower greenhouse gas emissions scenario has the potential to substantially reduce future temperature-related mortality
    corecore